A Methodology for Synthesizing Cataclysmic Variable Populations Using the Output of the MESA Stellar Evolution Code
Keywords:
common envelope, MESA, population synthesis, stars: cataclysmic variables, stars: evolutionAbstract
This paper presents a methodology for synthesizing populations of cataclysmic variables (CVs) using the MESA stellar evolution code. We construct a grid of binary systems with varying initial white dwarf progenitor masses, companion star masses, and orbital periods, and evolve these systems through pre- and post-common envelope phases. Preliminary results reveal diverse evolutionary pathways, including standard CV formation, mergers, double white dwarf formation, and systems that bypass Roche lobe overflow. These outcomes underscore the complexity of binary evolution and the need for refined models, particularly for common envelope ejection. We discuss the implications of our findings and outline future work incorporating statistical distributions for initial binary parameters to generate synthetic CV populations that can be compared with observational data, thus aiming to improve our understanding of CV formation and evolution.
Downloads
References
Rappaport, S., Joss, P.C. & Webbink, R.F., The evolution of highly compact binary stellar systems, The Astrophysical Journal, 254, pp. 616-640, Mar. 1982
Gänsicke, B.T., Dillon, M., Southworth, J., Thorstensen, J.R., Rodríguez-Gil, P., Aungwerojwit, A., Marsh, T.R., Szkody, P., Barros, S.C.C. & Casares, J., SDSS unveils a population of intrinsically faint cataclysmic variables at the minimum orbital period, Monthly Notices of the Royal Astronomical Society, 397(1), pp. 2170-2188, Aug. 2009.
Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P. & Timmes, F., Modules for Experiments in Stellar Astrophysics (MESA), The Astrophysical Journal Supplement Series, 192(1), id. 3, 35 pp., Jan. 2011.
Paxton, B., Marchant, P., Schwab, J., Bauer, E.B., Bildsten, L., Cantiello, M., Dessart, L., Farmer, R., Hu, H., Langer, N., et al., Modules for Experiments in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions, The Astrophysical Journal Supplement Series, 220(1), id. 15, 44 pp., Sep. 2015
Iben, I. Jr., Single and Binary Star Evolution, The Astrophysical Journal Supplement Series, 76, pp. 55-114, May 1991.
Eggleton, P.P., Aproximations to the radii of Roche lobes, The Astrophysical Journal, 268, pp. 368-369, May 1983.
Warner, B., Cataclysmic Variable Stars, Cambridge University Press, 1995.
Eggleton, P., Evolutionary Processes in Binary and Multiple Stars, ed. 1, Cambridge University Press, 2006.
Marchant, P., Pappas, K.M.W., Gallegos-Garcia, M., Berry, C.P.L., Taam, R.E., Kalogera, V. & Podsiadlowski, P., The role of mass transfer and common envelope evolution in the formation of merging binary black holes, Astronomy & Astrophysics, 650, id. A107, 22 pp., Jun. 2021.
McAllister, M., Littlefair, S.P., Parsons, S.G., Dhillon, V.S., Marsh, T.R., Gänsicke, B.T., Breedt, E., Copperwheat, C., Green, M.J., Knigge, C., et al., The evolutionary status of Cataclysmic Variables: eclipse modelling of 15 systems. Monthly Notices of the Royal Astronomical Society, 486(4), pp. 5535-5551, Jul. 2019
Zorotovic, M., Schreiber, M.R., Gänsicke, B.T., Rebassa-Mansergas, A., Nebot Gómez-Morán, A., Southworth, J., Schwope, A.D., Pyrzas, S., Rodríguez-Gil, P., Schmidtobreick, L., et al., Post common envelope binaries from SDSS. XIII. Mass dependencies of the orbital period distribution, Astronomy & Astrophysics, 536, id. L3, 4 pp., Dec. 2011.
Chiappini, C., Matteucci, F. & Gratton, R., The Chemical Evolution of the Galaxy: The Two-Infall Model, The Astrophysical Journal, 477(2), pp. 765-780, Mar. 1997.
Lian, J., Bergemann, M., Pillepich, A., Zasowski, G. & Lane, R.R., The integrated metallicity profile of the Milky Way, Nature Astronomy, 7, pp. 951-958, Jun. 2023.
Webbink, R.F., Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae, The Astrophysical Journal, 277, pp. 355-360, Feb. 1984
Davis. P.J., Kolb, U., Willems, B. & Gänsicke, B.T., How many cataclysmic variables are crossing the period gap? A test for the disruption of magnetic braking, Monthly Notices of the Royal Astronomical Society, 389(4), pp. 1563-1576, Oct. 2008.
De Kool, M., Common Envelope Evolution and Double Cores of Planetary Nebulae, The Astrophysical Journal, 358, pp.189-195. Jul. 1990.
Toonen, S. & Nelemans, G., The effect of common-envelope evolution on the visible population of post-common-envelope binaries, Astronomy & Astrophysics, 557, id. A87, 12 pp., Sep. 2013.
Prialnik, D. & Kovetz, A., An Extended Grid of Multicycle Nova Evolution Models, The Astrophysical Journal, 445, pp. 789-810, Jun. 1995
Kirkpatrick, J.D., Marocco, F., Gelino, C.R., Raghu, Y., Faherty, J.K., Bardalez Gagliuffi, D.C., Schurr, S.D., Apps, K., Schneider, A.C., Meisner, A.M., et al., The Initial Mass Function Based on the Full-sky 20 pc Census of ∼3600 Stars and Brown Dwarfs, The Astrophysical Journal Supplement Series, 271(2), id. 55, 93 pp., Apr. 2024.
Salpeter, E.E., The Luminosity Function and Stellar Evolution, The Astrophysical Journal, 121, pp. 161-167, Jan. 1955.
Moe, M. & Di Stefano, R., Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars, The Astrophysical Journal Supplement Series, 230(2), id. 15, 55 pp., Jun. 2017.
Fantin, N.J.,Côté, P., McConnachie, A.W., Bergeron, P., Cuillandre, J-C., Gwyn, Stephen D.J., Ibata, R.A., Thomas, G.F., Carlberg, R.G., Fabbro, S., et al., The Canada-France Imaging Survey: Reconstructing the Milky Way Star Formation History from Its White Dwarf Population, The Astrophysical Journal, 887(2), id. 148, 17 pp. Dec. 2019
Hall, P.D. & Tout, C.A., Core radii and common-envelope evolution, Monthly Notices of the Royal Astronomical Society, 444(4), pp. 3209–3219, Nov. 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 ITB Graduate School Conference

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
