The Effect of Element (Sr, Ti, B, and Mg) Modification on Microstructure to Increase Micro-Hardness of A356 Aluminum Alloy

  • Afghany Mostavan Doctoral Program of Materials Science and Engineering, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Jawa Barat, Indonesia
  • Asep Ridwan Department of Materials Science and Engineering, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Jawa Barat, Indonesia
  • Arif Basuki Department of Materials Science and Engineering, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Jawa Barat, Indonesia
  • Husaini Ardy Department of Materials Science and Engineering, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Jawa Barat, Indonesia
Keywords: A356 alloy, microstructure modification, micro hardness

Abstract

It is known that Sr, Ti, B, and Mg can modify the microstructure of the A356 aluminum alloy, and the heat treatment process causes spheroidization of eutectic silicon. This experiment presents the effect of modifier elements and heat treatment on microstructure and microhardness. The A356 aluminum alloy is modified with a combination of elements containing Sr, Ti, B, and Mg. The microstructure analysis of the modified A356 aluminum alloy revealed that the size distribution of the α-phase and eutectic silicon particles that form spheroid Si particles varies depending on the combination composition. Comparisons between unmodified and modified alloys show that the aspect ratios of the α phase and the eutectic silicon particles are different. The modified A356 aluminum alloy's microhardness can be improved. This could be related to the aspect ratio of the α phase and eutectic silicon phases, spheroidization of fine eutectic silicon, and precipitation hardening.

References

[1] S. P. Dwivedi, S. Sharma, & K. R. Mishra, A356 Aluminum Alloy and applications- A Review, Int. J. Adv. Mater. Manuf. Charact.,4(2), pp. 81–86, 2014, doi: 10.11127/ijammc.2014.08.01.
[2] M. Kaba, A. Donmez, A. Cukur, A. F. Kurban, H. E. Cubuklusu, & Y. Birol, AlSi5Mg0.3 Alloy for the Manufacture of Automotive Wheels, Int. J. Met., 12(3), pp. 614–624, 2018, doi: 10.1007/s40962-017-0191-2.
[3] European Aluminium Association, Applications - Chassis & Suspension - Wheels, The Aluminium Automotive Manual, 2011. https://european-aluminium.eu/wp-content/uploads/2022/11/aam-applications-chassis-suspension-3-wheels.pdf.
[4] ASTM Standard B 108/B108M - 08, Standard Specification for Aluminum-Alloy Permanent Mold Castings. ASTM International, 2009.
[5] D. G. Mallapur, S. A. Kori, & K. R. Udupa, Influence of Ti, B and Sr on the microstructure and mechanical properties of A356 alloy, J. Mater. Sci., 46(6), pp. 1622–1627, 2011, doi: 10.1007/s10853-010-4977-3.
[6] M. R. S. Ganesh, N. Reghunath, M. J.Levin, A. Prasad, S. Doondi, and K. V. Shankar, Strontium in Al–Si–Mg Alloy: A Review, 28(1). The Korean Institute of Metals and Materials, 2022.
[7] R. Chen, Q. Xu, H. Guo, Z. Xia, Q. Wu, & B. Liu, Correlation of solidification microstructure refining scale, Mg composition and heat treatment conditions with mechanical properties in Al-7Si-Mg cast aluminum alloys, Mater. Sci. Eng. A, 685, no. October 2016, pp. 391–402, 2017, doi: 10.1016/j.msea.2016.12.051.
[8] B. T. Sofyan, D. J. Kharistal, L. Trijati, K. Purba, & R. E. Susanto, Grain refinement of AA333 aluminium cast alloy by Al-Ti granulated flux, Mater. Des., 31, no. SUPPL. 1, pp. S36–S43, 2010, doi: 10.1016/j.matdes.2010.02.007.
[9] R. G. Guan & D. Tie, A review on grain refinement of aluminum alloys: Progresses, challenges and prospects, Acta Metall. Sin. (English Lett., 30(5), pp. 409–432, 2017, doi: 10.1007/s40195-017-0565-8.
[10] Y. Cui, D. J. M. King, A. P. Horsfield, & C. M. Gourlay, Solidification orientation relationships between Al3Ti and TiB2, Acta Mater.,186, pp. 149–161, 2020, doi: 10.1016/j.actamat.2019.12.013.
[11] L. M. Chart, Effect of Alloying Elements on the Sr Modification of Al-Si Cast Alloys, pp. 8–9, 2019.
[12] M. Emamy, M. Malekan, A. H. Pourmonshi, & K. Tavighi, the influence of heat treatment on the structure and tensile properties of thin-section A356 aluminum alloy casts refined by Ti, B and Zr,” J. Mater. Res., 32(18), pp. 3540–3547, 2017, doi: 10.1557/jmr.2017.193.
[13] J. H. Peng, X. L. Tang, J. T. He & D. Y. Xu, Effect of heat treatment on microstructure and tensile properties of A356 alloys, Trans. Nonferrous Met. Soc. China (English Ed., 21(9), pp. 1950–1956, 2011, doi: 10.1016/S1003-6326(11)60955-2.
[14] X. Dong, Y. Zhang, S. Amirkhanlou, & S. Ji, High performance gravity cast Al9Si0.45Mg0.4Cu alloy inoculated with AlB2 and TiB2, J. Mater. Process. Technol., 252, no. August 2017, pp. 604–611, 2018, doi: 10.1016/j.jmatprotec.2017.10.028.
[15] Y. Birol, Effect of silicon content in grain refining hypoeutectic Al-Si foundry alloys with boron and titanium additions, Mater. Sci. Technol., 28(4), pp. 385–389, 2012, doi: 10.1179/1743284711Y.0000000049.
Published
2023-06-24
How to Cite
Mostavan, A., Ridwan, A., Basuki, A., & Ardy, H. (2023). The Effect of Element (Sr, Ti, B, and Mg) Modification on Microstructure to Increase Micro-Hardness of A356 Aluminum Alloy. ITB Graduate School Conference, 2(2), 40-49. Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/100
Section
Articles