Open-system Magmatic Process at Agung Volcano, Bali, Indonesia: Evidence from Phenocryst Compositions and Textures

  • Adzkia Noerma Arifa Geological Engineering Master Program, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung
  • I Gusti Bagus Eddy Sucipta 2Petrology, Volcanology and Geochemistry Research Group, Geological Engineering, Faculty of Earth Sciences and Technology, Institut Teknologi Bandun
  • Idham Andri Kurniawan Petrology, Volcanology and Geochemistry Research Group, Geological Engineering, Faculty of Earth Sciences and Technology, Institut Teknologi Bandun
Keywords: Agung volcano, disequilibrium, magma recharge, open system

Abstract

Agung volcano is an active stratovolcano located in Bali, Indonesia. It is the highest volcano on Bali at 3142 m a.s.l. Samples are collected along the flanks and represent each lava unit. In term of petrology, samples are porphyritic high alumina basalt, basaltic andesite and andesite with inhomogeneous phenocrysts of plagioclase, clinopyroxene, orthopyroxene, olivine, amphibole and titano-magnetite. Plagioclase phenocrysts frequently show fine sieve, resorption surface, coarse sieve and oscillatory zoning texture. Augite and enstatite phenocrysts display texture less zone and monotonous crystal zoning. Olivine phenocrysts are less abundant and present reaction rims of Mg-rich of orthopyroxene and titano-magnetite or Ca-poor clinopyroxene. Hornblende micro-phenocrysts just found in AD 1963 andesitic lava. They have reaction rims composed of augite, feldspar and symplectitic intergrowth of titanomagnetite. Plagioclase, pyroxene and olivine phenocrysts frequently display increases in Mg or Ca contents within mid-crystals. Dissolution, resorption and reverse zoning suggest open system magmatic behavior of repeated mafic magma recharge and also mineral-magma disequilibrium.

References

Fontijn, K., Costa, F., Sutawidjaja, I., Newhall, C. G., & Herrin, J. S., A 5000-year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implication for eruption frequency and volcanic hazard, Bulletin of Volcanology, 77(59), Jun. 2015.

Geiger, H., Troll, V. R., Jolis, E. M., Deegan, F. M., Harris, C., Hilton, D. R. & Freda, C., Multi-level magma plumbing at Agung and Batur volcanoes increases risk of hazardous eruptions, Scientific Report, 8, pp. 1-14, Jul. 2018.

Nasution, A., Haerani, N., Mulyadi, D., & Hendrasto, M., Geological map of Agung volcano, Bali, Directorate of Volcanology and Geological Hazard Mitigation, Bandung, 2004.

Syracuse, E. M. & Goeffrey, A. A., Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochemistry, Geophysics, Geosystems, 7(5), pp. 1-18, May 2006.

Verma, S. P. & Verma S. K., First 15 probability-based multidimensional tectonic discrimination diagrams for intermediate magmas and their robustness against post emplacement compositional changes and petrogenetic processes, Turkish Journal of Earth Sciences, 22, pp. 931-995, Oct 2013.

Foden, J. D., The Petrology of The Calcalkaline Lavas of Rindjani Volcano, East Sunda Arc: A model for Island Arc Petrogenesis, Journal of Petrology, 24(1), pp. 98-130, 1983.

Le Bas, M. J., Le Maitre, R. W. & Streckeisen, A., A chemical classification of volcanic rocks based on the Total Alkali-Silica diagram, Journal of Petrology, 27, pp. 745-750, 1984.

Peccerillo, A. & Taylor, S. R., Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81, 1976.

Deer, W. A., Howie, R. A. & Zussman, J. An introduction to the rock forming mineral, ed.3, Mineralogical Society of Great Britain and Ireland, 2013.

Streck, M. J., Mineral textures and zoning as evidence for open system processes, Minerals, inclusions and volcanic processes, Putirka, K. D. & Tepley III, F. J., eds., Walter de Gruyter GmbH & Co KG, pp. 595-622, 2018.

Renjith, M.L., Micro-texture in plagioclase from 1994-1995 eruption, barren island volcano: evidence of dynamic magma plumbing system in the Andaman subduction zone, Geoscience Frontier, 5, pp. 113-126, 2014.

Perugini, D. Busa, T., Poli, G. & Nazzareni S., The role of chaotic dynamics and flow fields in the development of disequilibrium textures in volcanic rocks, Journal of Petrology, 44(4), p. 733-756, Apr. 2003.

Rutherford, M. J. & Devine, J. D., The role of chaotic dynamics and flow fields in the development of disequilibrium textures in volcanic rocks, Journal of Petrology, 44(8), pp. 1433-1454, 2003.

Szramek, L. & Browne, B., Rates of magma ascent and storage, The Encyclopedia of Volcanoes (Second Edition), Sigurdsson, H., ed., Academic Press, pp. 2013-214, 2015.

Browne, B., Gardner, J. E. & Larsen, J. F. Amphibole reaction rims in response to decompression compared to heating: an experimental approach, AGU Fall meeting, 2003.

Published
2023-06-24
How to Cite
Arifa, A. N., Sucipta, I. G. B. E., & Kurniawan, I. A. (2023). Open-system Magmatic Process at Agung Volcano, Bali, Indonesia: Evidence from Phenocryst Compositions and Textures. ITB Graduate School Conference, 2(2), 27-39. Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/99
Section
Articles