Prediction of Hydropower Plant Electricity Production Dependence on Weather Conditions Using Machine Learning Approach

Authors

  • Dennis Hasnan Zulfialda Program Studi S2, Sains Komputasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, PT PLN (Persero) Jakarta, Indonesia
  • Hakim Luthfi Malasan KK Astronomi dan Program Studi Sains Komputasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Bandung, Indonesia

Keywords:

hydroelectric power plant, Machine learning, Weather Data, climate change

Abstract

To optimize the hydropower plant operations in the Sulawesi Generation Unit of PLN, this study proposes a data-driven approach to analyze electricity production by incorporating weather data. Utilizing historical data from January 2014 to December 2023, relevant indicators were extracted using machine learning algorithms. The integration of hydropower generation data, dam operational data, temperature, and rainfall enabled the prediction of electricity output through various models, including SARIMAX, Random Forest Regressor, Support Vector Regression, and Extreme Gradient Boosting. The dataset, consisting of 120 rows and 18 variables, demonstrated that combining diverse yet correlated data sources improve prediction accuracy. The best-performing model was validated and applied to forecast on new, unseen data. The findings indicate that machine learning offers a strategic advantage for PLN's decision-making in managing interconnected hydropower operations within the national power grid.

Downloads

Download data is not yet available.

Author Biography

Hakim Luthfi Malasan, KK Astronomi dan Program Studi Sains Komputasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, Bandung, Indonesia

KK Astronomi dan Program Studi Sains Komputasi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung

References

A. Devkota, A. R. Shrestha, and P. Koirala, “Assessment of climate change impact on hydropower generation: A case study of the Upper Tamakoshi Hydroelectric Project, Nepal,” Heliyon, vol. 8, no. 12, p. e12529, 2022. https://www.sciencedirect.com/science/article/pii/ S2405844022035289.

S. Rössler, M. Zappa, and M. Weingartner, “Hot and dry weather impacts on Swiss hydropower production,” Environmental Research Letters, vol. 18, no. 7, 2023. https://iopscience.iop.org/article/10.1088/1748-9326/acd8d7.

Y. van Vliet et al., “The influence of climate variability and extremes on global hydropower generation: A multi-model assessment,” Hydrology and Earth System Sciences, vol. 26, pp. 2431–2450, 2022. https://hess.copernicus.org/articles/26/2431/2022/.

National Centers for Environmental Information (NCEI), "El Niño Southern Oscillation (ENSO) Monitoring," NCEI Access Monitoring. https://www.ncei.noaa.gov/access/monitoring/enso/sst

Santoso, P., Abijono, H., and Anggreini, N. L. (2021): Algoritma Supervised Learning Dan Unsupervised Learning Dalam Pengolahan Data, Unira Malang |, 4(2).

F. Alzami, A. Salam, I. Rizqa, C. Irawan, P. N. Andono, and D. Aqmala, "Demand prediction for food and beverage SMEs using SARIMAX and weather data," *IETIA*, vol. 29, no. 1, Feb. 2024. [Online]. Available: https://doi.org/10.18280/isi.290129.

Breiman, L. (2001): Random Forests, 45, 5–32.

Gökçe, Muhammet & Duman, Erkan. (2022). Performance Comparison of Simple Regression, Random Forest and XGBoost Algorithms for Forecasting Electricity Demand. 1-6. 10.1109/IISEC56263.2022.9998213.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.

Xuetao Li, Ziwei Wang, Chengying Yang, Ayhan Bozkurt, An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms, Energy, Volume 296, 2024, 131259, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2024.131259.

I. R. Isnaeni, Sudarmin, and Z. Rais, "Analisis Support Vector Regression (SVR) dengan Kernel Radial Basis Function (RBF) untuk Memprediksi Laju Inflasi di Indonesia," *VARIANSI: Journal of Statistics and Its Application on Teaching and Research*, vol. 4, no. 1, pp. 30–38, 2022, doi: 10.35580/variansiunm13.

S.I. Abba, Bara'u Gafai Najashi, Abdulazeez Rotimi, Bashir Musa, Nasser Yimen, S.J. Kawu, S.M. Lawan, Mustafa Dagbasi, Emerging Harris Hawks Optimization based load demand forecasting and optimal sizing of stand-alone hybrid renewable energy systems– A case study of Kano and Abuja, Nigeria, Results in Engineering, Volume 12, 2021, 100260, ISSN 2590-1230, https://doi.org/10.1016/j.rineng.2021.100260.

Downloads

Published

2025-10-29

How to Cite

Zulfialda, D. H., & Malasan, H. L. (2025). Prediction of Hydropower Plant Electricity Production Dependence on Weather Conditions Using Machine Learning Approach. ITB Graduate School Conference, 5(1), 1–14. Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/572