Spare Part Selection for Storage in PLN Suku Cadang Warehouse Using Clustering Analysis

Authors

  • Ahmad Mushawir Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia
  • Akhmad Faeda Insani PT PLN (PERSERO), Head Office, Jakarta, 121260, DKI, Indonesia
  • Aditya Adiaksa PT PLN (PERSERO), Head Office, Jakarta, 121260, DKI, Indonesia
  • Zainuddin Zainuddin PT PLN (PERSERO), Head Office, Jakarta, 121260, DKI, Indonesia
  • Sparisoma Viridi Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, West Java, Indonesia

Keywords:

clustering, power plant, spare parts

Abstract

PLN Suku Cadang (PLNSC) faces challenges in determining which spare parts should be stored in warehouses to support power plant operations. This study employs the k-Means clustering method to analyze historical data, in-cluding demand frequency, lead time, quantity, and cost. Using this method, spare parts are grouped into several clusters to identify storage priorities. The clustering results are further validated using specific criteria: high demand frequency, low lead time, high quantity, and low cost. This study demon-strates that the clustering method can help optimize inventory management, reduce downtime risks, and improve cost efficiency in storage.

Downloads

Download data is not yet available.

References

E. C. Griffin, B. B. Keskin, A. W. Allaway, Clustering retail stores for inventory transshipment, European Journal of Operational Research 311 (2023) 690–707. doi:10.1016/j.ejor.2023.06.008.

M. Zhu, X. Zhou, Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multistation manufacturing systems, International Journal of Production Economics 264 (2023) 108971. doi:10.1016/j.ijpe.2023.108971.

A. Abouelrous, A. F. Gabor, Y. Zhang, Optimizing the inventory and fulfillment of an omnichannel retailer: a stochastic approach with scenario clustering, Computers & Industrial Engineering 173 (2022) 108723. doi:10.1016/j.cie.2022.108723.

Y. Khanorkar, P. Kane, Selective inventory classification using abc classification, multi-criteria decision making techniques, and machine learning techniques, Materials Today: Proceedings 72 (2023) 1270–1274. doi:10.1016/j.matpr.2022.09.298.

S. Yakovlev, V. Sorokin, E. Alexandrova, D. Syromolotov, I. Gorbachenko, Development of an information system for the classification of warehouse stocks, Transportation Research Procedia 68 (2023) 475–482. doi:10.1016/j.trpro.2023.02.064.

W. Villegas-Ch, A. M. Navarro, S. Sanchez-Viteri, Optimization of inventory management through computer vision and machine learning technologies, Intelligent Systems with Applications 24 (2024) 200438. doi:10.1016/j.iswa.2024.200438.

G. Shang, L. Xu, C. Lu, B. Zhang, Warehouse equipment maintenance strategy based on the prediction of total amount of stock in & out operations, Procedia CIRP 120 (2023) 237–242. doi:10.1016/j.procir.2023.08.042.

H. Abbasimehr, A. Bahrini, An analytical framework based on the recency, frequency, and monetary model and time series clustering techniques for dynamic segmentation, Expert Systems with Applications 192 (2022) 116373.

D. Das, P. Kayal, M. Maiti, K-means clustering model for analyzing the bitcoin extreme value returns, Decision Analytics Journal 6 (2023) 100152. doi:10.1016/j.dajour.2022.100152. URL https://doi.org/10.1016/j.dajour.2022.100152

S. S. Indasari, A. Tjahyanto, Decision support model in compiling owner estimate for fmcgs products from various marketplaces with tf-idf and lsa-based clustering, Procedia Computer Science 234 (2024) 455–462. doi:10.1016/j.procs.2024.03.027

Downloads

Published

2025-01-21

How to Cite

Mushawir, A., Insani, A. F., Adiaksa, A., Zainuddin, Z., & Viridi, S. (2025). Spare Part Selection for Storage in PLN Suku Cadang Warehouse Using Clustering Analysis. ITB Graduate School Conference, 4(1). Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/446

Issue

Section

Articles