Floating Photovoltaic Plant: A Review
Keywords:
FPVT, LCOE, TechnologyAbstract
Floating photovoltaic (FPV) systems have emerged as a promising alternative to traditional land-based solar energy solutions, offering a sustainable and efficient approach to harnessing solar energy. The discussion of the topic provides a comprehensive review of the technical, economic, and environmental aspects of FPV technology. It examines the performance ratio, levelized cost of electricity, and compares FPV systems with ground-mounted, rooftop, and canal-top, offshore solar installations. The potential advantages of FPV systems, such as higher energy yields and reduced environmental impact, are discussed, highlighting their ability to conserve land and minimize water evaporation when deployed on water bodies. The review also explores the economic feasibility and technical parameters of FPV systems, including design requirements, energy demand, weather forecasting, and temperature and heat transfer coefficients. The results of this study conclude some of the need for further research to optimize FPV system performance, assess environmental impacts, and enhance economic viability. It calls for future studies to focus on data analysis and the development of innovative solutions to overcome current limitations.
Downloads
References
L. Micheli and D. L. Talavera, “Economic feasibility of floating photovoltaic power plants: Profitability and competitiveness,” Renew
Energy, vol. 211, pp. 607–616, Jul. 2023, doi: 10.1016/j.renene.2023.05.011.
E. & S. World Bank Group, “Where Sun Meets Water : Floating Solar Handbook For Practitioner,” 2019. doi: https://doi.org/10.1596/31880.
Wood Mackenzie, “Why Floating Solar Has An Important Role To Play In The Energy Transition | Wood Mackenzie,” 2021, Accessed: Dec. 05, 2023. [Online]. Available: https://www.woodmac.com/news/opinion/why-floating-solar-has-animportant-role-t-oplay-in-the-energy-transition/
M. Q. Khokhar, M. A. Zahid, and J. Kim, “A Review on Floating Photovoltaic Technology (FPVT)”, doi: 10.21218/CPR.2020.8.3.067.
E. & S. World Bank Group, “Where Sun Meets Water : Floating Solar Market Report,” 2019. doi: https://doi.org/10.1596/32804.
E. Muñoz-Cerón, J. C. Osorio-Aravena, F. J. Rodríguez-Segura, M. Frolova, and A. Ruano-Quesada, “Floating photovoltaics systems on
water irrigation ponds: Technical potential and multi-benefits analysis,” Energy, vol. 271, May 2023, doi: 10.1016/j.energy.2023.127039.
R. Cazzaniga and M. Rosa-Clot, “The booming of floating PV,” Solar Energy, vol. 219, pp. 3–10, May 2021, doi: 10.1016/j.solener.2020.09.057.
P. E. Campana, L. Wästhage, W. Nookuea, Y. Tan, and J. Yan, “Optimization and assessment of floating and floating-tracking PV
systems integrated in on- and off-grid hybrid energy systems,” Solar Energy, vol. 177, pp. 782–795, Jan. 2019, doi: 10.1016/j.solener.2018.11.045.
H. M. Pouran, “From collapsed coal mines to floating solar farms, why China’s new power stations matter,” Energy Policy, vol. 123, pp. 414–420, Dec. 2018, doi: 10.1016/j.enpol.2018.09.010.
M. Karimirad, M. Rosa-Clot, A. Armstrong, and T. Whittaker, “Floating solar: Beyond the state of the art technology,” May 01, 2021, Elsevier Ltd. doi: 10.1016/j.solener.2021.02.034.
A. Sahu, N. Yadav, and K. Sudhakar, “Floating photovoltaic power plant: A review,” Dec. 01, 2016, Elsevier Ltd. doi: 10.1016/j.rser.2016.08.051.
S. K. Cromratie Clemons, C. R. Salloum, K. G. Herdegen, R. M. Kamens, and S. H. Gheewala, “Life cycle assessment of a floating photovoltaic system and feasibility for application in Thailand,” Renew Energy, vol. 168, pp. 448–462, May 2021, doi: 10.1016/j.renene.2020.12.082.
M. M. M. Islam et al., “Techno-economic Analysis of Hybrid Renewable Energy System for Healthcare Centre in Northwest Bangladesh,” Process Integration and Optimization for Sustainability, vol. 7, no. 1–2, pp. 315–328, Mar. 2023, doi: 10.1007/s41660-022-00294-8.
IESR, “PLTS Terapung sebagai kunci akselerasi pengembangan tenaga surya skala besar di Indonesia,” IESR, 2021, Accessed: Oct. 25, 2023. [Online]. Available: https://iesr.or.id/pustaka/plts-terapung-sebagaikunci-akselerasi-pengembangan-tenaga-surya-skala-besar-di-indonesia
A. Ghosh, “A comprehensive review of water based PV: Flotavoltaics, under water, offshore & canal top,” Aug. 01, 2023, Elsevier Ltd. doi: 10.1016/j.oceaneng.2023.115044.
S. Thotakura et al., “Operational performance of megawatt-scale grid integrated rooftop solar PV system in tropical wet and dry climates of India,” Case Studies in Thermal Engineering, vol. 18, 2020, doi: 10.1016/j.csite.2020.100602.
M. García-López, B. Montano, and J. Melgarejo, “The financial competitiveness of photovoltaic installations in water utilities: The case of the Tagus-Segura water transfer system,” Solar Energy, vol. 249, pp. 734–743, Jan. 2023, doi: 10.1016/j.solener.2022.12.025.
T. T. E. Vo, H. Ko, J. Huh, and N. Park, “Overview of possibilities of solar floating photovoltaic systems in the offshore industry,” Nov. 01, 2021, MDPI. doi: 10.3390/en14216988.
Ocean Sun, “Investor Presentation NOK 150 million private placement and subsequent listing on Merkur Market.” Accessed: Dec. 20, 2023. [Online]. Available: https://oceansun.no/wpcontent/uploads/2020/11/Ocean-Sun-IP-12-Oct-2020.pdf
H. Meschede et al., “On the transferability of smart energy systems on off-grid islands using cluster analysis – A case study for the Philippine archipelago,” Appl Energy, vol. 251, Oct. 2019, doi: 10.1016/j.apenergy.2019.05.093.
M. Rosa-Clot and G. M. Tina, “The Floating PV Plant,” in Submerged and Floating Photovoltaic Systems, Elsevier, 2018, pp. 89–136. doi: 10.1016/b978-0-12-812149-8.00005-3.
E. Muñoz-Cerón, J. C. Osorio-Aravena, F. J. Rodríguez-Segura, M. Frolova, and A. Ruano-Quesada, “Floating photovoltaics systems on water irrigation ponds: Technical potential and multi-benefits analysis,” Energy, vol. 271, May 2023, doi: 10.1016/j.energy.2023.127039.
A. El Hammoumi, S. Chtita, S. Motahhir, and A. El Ghzizal, “Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels,” Nov. 01, 2022, Elsevier Ltd. doi: 10.1016/j.egyr.2022.09.054.
M. Q. Khokhar, M. A. Zahid, and J. Kim, “A Review on Floating Photovoltaic Technology (FPVT)”, doi: 10.21218/CPR.2020.8.3.067.
M. K. Kaymak and A. D. Şahin, “Problems encountered with floating photovoltaic systems under real conditions: A new FPV concept and novel solutions,” Sustainable Energy Technologies and Assessments, vol. 47, Oct. 2021, doi: 10.1016/j.seta.2021.101504.
P. Ranjbaran, H. Yousefi, G. B. Gharehpetian, and F. R. Astaraei, “A review on floating photovoltaic (FPV)power generation units,” Aug. 01, 2019, Elsevier Ltd. doi: 10.1016/j.rser.2019.05.015.
R. O. Yakubu, D. A. Quansah, L. D. Mensah, W. Ahiataku-Togobo, P. Acheampong, and M. S. Adaramola, “Comparison of ground-based and floating solar photovoltaic systems performance based on monofacial and bifacial modules in Ghana,” Energy Nexus, vol. 12, Dec. 2023, doi: 10.1016/j.nexus.2023.100245.
F. Muhammad-Sukki et al., “Solar photovoltaic in Malaysia: The way forward,” Sep. 2012. doi: 10.1016/j.rser.2012.05.002.
T. N. Do, P. J. Burke, K. G. H. Baldwin, and C. T. Nguyen, “Underlying drivers and barriers for solar photovoltaics diffusion: The case of Vietnam,” Energy Policy, vol. 144, Sep. 2020, doi: 10.1016/j.enpol.2020.111561.
N. Reyseliani and W. W. Purwanto, “Pathway towards 100% renewable energy in Indonesia power system by 2050,” Renew Energy, vol. 176, pp. 305–321, Oct. 2021, doi: 10.1016/j.renene.2021.05.118.
IEC, “IEC 61853-2 Photovoltaic (PV) module performance testing and energy rating : part 2. spectral responsivity, incidence angle and module operating temperature measurements,” 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 ITB Graduate School Conference

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
