Thermal Simulation of the TIAC System for Muara Karang CCPP Block 2: Feasibility Study for Power, Efficiency, and Emission Improvements
Keywords:
efficiency, greenhouse gas emissions, heat rate, output power, turbine inlet air coolingAbstract
This study conducted a thermal simulation of the turbine inlet air cooling (TIAC) system for Muara Karang combine cycle power plant (CCPP) Block 2, focusing on its feasibility for enhancing power output, efficiency, and reducing greenhouse gas (GHG) emissions. Implementing TIAC on gas turbine generator) GTG 2.1 increased power output from 235 MW to 252.2 MW gross of power, reduced the heat rate, and improved plant efficiency. Financial analysis showed viability, with the internal rate of return (IRR) rising from 14.36% to 14.44%, surpassing PT. PLN's 9.28% threshold, and the net present value (NPV) increasing by Rp. 31.1 billion. GHG emission intensity decreased from 0.6018 kgCO2e/kWh to 0.6007 kgCO2e/kWh.
Downloads
References
Presiden RI, UU RI Nomor 16 Tahun 2016 Ttg Pengesahan Paris Agreement To The United Nations Framework Convention On Climate
Change. 2016.
KESDM, “Draft Rencana Umum Ketenagalistrikan,” vol. 1, pp. 1–271, 2023.
PT.PLN (Persero), “Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) 2021-2030 PT. PLN (PERSERO),” 2021
Y. N. Dabwan, L. Zhang, and G. Pei, “A novel inlet air cooling system to improve the performance of intercooled gas turbine combined cycle power plants in hot regions,” Energy, vol. 283, no. May, p. 129075, 2023, doi: 10.1016/j.energy.2023.129075.
T. Komuro, T. Sonoda, K. Hidaka, E. Ito, Y. Tomita, and S. Shibutani, “Combined, Power Output Augmentation of Gas Turbine Type, Cycle by Inlet-Air Cooling System of Chiller Temperature, under High Ambient Air,” Mitsubishi Heavy Ind. Tech. Rev. Vol. 47 No. 4, vol. 47, pp. 33–39, 2010.
A. Nordin, D. A. Salim, M. A. Bin Othoman, S. N. O. Kamal, D. T. H. Khai, and M. K. Y. Yusof, “Techno-economic assessment of turbine inlet air cooling for small scale combined cycle power plant in Malaysia climate,” in Advancement in Emerging Technologies and Engineering Applications, Springer, 2020, pp. 369–375.
H. H. Erdem and S. H. Sevilgen, “Case study: Effect of ambient temperature on the electricity production and fuel consumption of a
simple cycle gas turbine in Turkey,” Appl. Therm. Eng., vol. 26, no. 2–3, pp. 320–326, 2006, doi: 10.1016/j.applthermaleng.2005.08.002.
MHI, Mitsubishi Heavy Industries PLTGU Blok II Muara Karang Manual Book. MHI, 2009.
A. Subagio and R. Garchia, “Perencanaan Sistem Pendingin Udara Masuk Gas Turbin 15°C Menggunakan Absorption Chiller di PLTGU UBP PRIOK,” no. Snttm Xiv, pp. 7–8, 2015.
Zulfikry and P. S. Darmanto, “Perancangan Sistem Pendingin Udara Pasok (Inlet Air Cooling) Pembangkit Listrik Tenaga Gas Studi Kasus : PLTGU Muara Karang,” Institut Teknologi Bandung, 2011. [Online]. Available: https://digilib.itb.ac.id/gdl/view/60548/turbine-inlet-aircooling?rows=737&per_page=2
BMKG, “Data Laporan Iklim Harian Jakarta Utara,” Jakarta Utara, 2023. [Online]. Available: https://dataonline.bmkg.go.id/home
E. Kakaras, A. Doukelis, A. Prelipceanu, and S. Karellas, “Inlet air cooling methods for gas turbine based power plants,” J. Eng. Gas
Turbines Power, vol. 128, no. 2, pp. 312–317, 2006, doi: 10.1115/1.2131888.
Y. A. Çengel, M. A. Boles, and M. Kanoğlu, Thermodynamics An Engineering Approach Tenth Edition, Tenth Edit. McGraw Hill LLC,
Avenue of the Americas, New York, NY 10019, 2024. [14] P. M. K. Operation Planner, “Laporan Efisiensi Bulanan PLTGU Blok 2
UP Muara Karang Bulan Desember 2023a,” 2023.
MHI, “Commisioning GT 2.1,” 2009.
H. W. Stanford III and A. F. Spach, Analysis and Design of Heating, Ventilating, and Air-Conditioning Systems. 2019.
Z. Liu and I. A. Karimi, “Simulating combined cycle gas turbine power plants in Aspen HYSYS,” Energy Convers. Manag., vol. 171, no. June, pp. 1213–1225, 2018, doi: 10.1016/j.enconman.2018.06.049.
NOAA, “The Atmosphere Introduction to the Atmosphere.” [Online]. Available: https://www.noaa.gov/jetstream/atmosphere
A. HYSYS, “Gibbs Reactor.” Aspen HYSYS, 2020.
MHI, “Centrifugal Chiller Systems.” Accessed: Jun. 04, 2024. [Online]. Available: https://www.mhimth.co.jp/catalogue/index.php?mode=browse&lang=en&contentsNumber=679
A. Nordin, D. A. Salim, M. A. Othoman, S. N. Omar Kamal, D. Tam, and M. K. Y. Yusof, “Turbine Inlet Air Cooling for Industrial and Aeroderivative Gas Turbine in Malaysia Climate,” IOP Conf. Ser. Earth Environ. Sci., vol. 104, no. 1, p. 12003, 2017, doi: 10.1088/1755-
/104/1/012003.
R. Hosseini, A. Beshkani, and M. Soltani, “Performance improvement of gas turbines of Fars (Iran) combined cycle power plant by intake air cooling using a media evaporative cooler,” Energy Convers. Manag., vol.
, no. 4, pp. 1055–1064, 2007, doi: 10.1016/j.enconman.2006.10.015. [23] E. Kakaras, A. Doukelis, and S. Karellas, “Compressor intake-air cooling in gas turbine plants,” Energy, vol. 29, no. 12-15 SPEC. ISS., pp. 2347–2358, 2004, doi: 10.1016/j.energy.2004.03.043. [24] Direktorat Jenderal Ketenagalistrikan Kementerian ESDM, Pedoman Perhitungan dan Pelaporan Inventarisasi Gas Rumah Kaca. Bidang
Energi - Sub Bidang Ketenagalistrikan, 2018. [Online]. Available: https://applegatrik.esdm.go.id/public/pdf/Pedoman_Penghitungan_dan_Inventarisasi_GRK_Sub_Bidang_Ketenagalistrikan _Revisi_Jan_2019.pdf
Araner, “Turbine Inlet Air Cooling Systems: Boosting Power and Money.” [Online]. Available: https://www.araner.com/blog/turbine-inletair-cooling-systems.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 ITB Graduate School Conference

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
