Techno-Economic Evaluation of Suralaya CFPP Unit 1 Coal Gasification for Gas Supply Cilegon CCPP
Keywords:
IGCC, Suralaya CFPP unit 1, Cilegon CCPP, Gas SupplyAbstract
The Indonesian government’s energy transition policy includes phasing out Coal-Fired Power Plants (CFPPs), such as Suralaya CFPP Unit 1, and addressing natural gas limitations in Combined Cycle Power Plants (CCPPs) like Cilegon CCPP. This study introduces a novel approach as the first to integrate syngas production using Mitsubishi Heavy Industries (MHI) entrained-flow gasifier fueled by coal from a retiring CFPP to support CCPP operations. The innovation lies in repurposing decommissioned CFPP assets, reducing dependence on natural gas while leveraging advanced gasification technology to maintain power generation efficiency. The MHI gasifier achieves 99,9% carbon conversion with CGE 77,2 % and produces syngas with an LHV of 4,575 MJ/kg, enabling a combined cycle output of 306 MW with 50,36% efficiency. This process also reduces air consumption by 25%, from 2.188.000 kg/h to 1.650.000 kg/h, contributing to environmental sustainability. Economic analysis estimates construction costs at Rp41,3 trillion for the gasification plant and Rp1,02 trillion for a 15 km gas pipeline from Suralaya to Cilegon. This study pioneers a pathway for integrating gasification technology into Indonesia’s energy infrastructure, demonstrating a practical and sustainable strategy to transition from coal dependence to cleaner energy systems while maximizing efficiency and minimizing environmental impact.
Downloads
References
Kementrian Energi dan Sumberdaya Mineral Republik Indonesia. https://www.esdm.go.id/en/media-center/news-archives/bidik-target-nze-2060-perencanaan-energi-pegang-peranan-penting [Online]; October 2024 [accessed 03.08.24].
Materi COC korporat ke 43, “DI KONFERENSI KELISTRIKAN SE-ASIA PASIFIK, PLN PAPARKAN SKENARIO TRANSISI ENERGI MENUJU NZE 2060”. PLN Indonesia Power. Oktober 2023.
Yang X, Tang W, Liu X, Du H, Wu Y, Zhang J. Synthesis of mesoporous silica fromcoal slag and CO2 for phenol removal. J Clean Prod2019;208:1255–64.https://doi.org/10.1016/j.jclepro.2018.10.212 .
Miao Z, Wu J, Niu Y, Guo Z, Guo F, Zhang Y. Development of a novel type hierarchical porous composite from coal gasification fine slag for CO2 capture. Chem Eng J 2022;435:134909. https://doi.org/10.1016/j.cej.2022.134909.
Ünlü N, ¨Ozdo˘gan S. Entrained flow Co-gasification of torrefied biomass and coal. Energy 2023;263.https://doi.org/10.1016/j.energy.2022.125864 .
Kumari N, Saha S, Sahu G, Chauhan V, Roy R, Datta S, et al. Comparison of CO2 gasification reactivity and kinetics: petcoke, biomass and high ash coal. Biomass Convers Biorefinery 2022;12:2277–90. https://doi.org/10.1007/s13399-020-00882-z .
Takao Hashimoto, Katsuhiro Ota, Yuuichirou Kitagawa, Koichi Sakamoto, Takashi Iwahashi, Katsuhiko Yokohama, et al. Development of Coal Gasification System for Producing Chemical Synthesis Source Gas. Mitsubishi Heavy Industries Technical Review Vol. 47 No. 4 (December 2010).
Mitsubishi Power. Integrated Coal Gasification Combined Cycle (IGCC) Power Plants.https://power.mhi.com/products/igcc [Online]; August 2024 [accessed 03.08.24].
PT. PLN Indonesia Power. Dashboard REOC PLTU Suralaya Unit 1.” https://pivision.plnindonesiapower.co.id/PIVision/#/Displays/11682/SLA1-Plant-Performance(rev-00)?starttime=-8h&endtime=*” [Online]; August 2024 [accessed 03.08.24].
Kaneko et al, 2001, Gasification Technology Conference : Project Status of 250MW Air-blown IGCC Demonstration Plant.
William M. Vatavuk. Updating The Chemical Engineering Plant Cost Index (CEPCI). Vatavuk Engineering, Engineering Practice. https://www.chemengonline.com/Assets/File/CEPCI_2002.pdf [Online] [accessed 03.08.24].
Sanna Tuomi, Ilkka Hannula & Esa Kurkela. IGCC (Integrated Gasification Combined Cycle) with CCS (Carbon Capture and Storage). VTT Technical Research Centre of Finland. 2013.
Global Energy Monitor https://www.gem.wiki/Nakoso_power_station. [Online] [accessed 03.08.24].
Anon., Completion of SSWJ Project, PGN Tbk, 2008.
R.H. Perry, D.H. Green, Perry’s Chemical Engineers’ Handbook 7 Edition, McGraw-Hill, New York, 1997, p.9.
L.O.R. Maane, Donggi-Senoro Natural Gas Study : Domestic Transportation option, LNG or CNG, PT. IKPT, 2009, p.6, (in Indonesian). H. Lee, Dawning of a New Era: The LNG Story, Discussion Paper 2005-07, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, April, 2005.
H. Lee, Dawning of a New Era: The LNG Story, Discussion Paper 2005-07, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, April, 2005.
Nikolay A. Abaimov, and Alexander F. Ryzhkov : Development of advanced air-blown entrainedflow two-stage bituminous coal IGCC gasifier, EPJ Web of Conferences 159, 00001 (2017) AVTFG2016
Politecnico di Milano, Dipartimento di Energia, Via R. Lambruschini : Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up. Elsevier. Energy 53 (2013) 221e229.
Giuffrida A, Romano MC, Lozza G. Thermodynamic analysis of air-blown gasification for IGCC applications. Appl Energy 2011;88(11):3949e58.
Salvatore Iavarone, Alessandro Parente, https://www.frontiersin.org/journals/mechanical-engineering/articles/10.3389/fmech.2020.00013/full. [Online] [accessed 29.08.24].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 ITB Graduate School Conference

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
