The Absorber Layer Variation Effect on the Performance of Sn-Based Perovskite Solar Cell

Authors

  • Setianto Ramaputra PT PLN Nusantara Power Unit Pembangkitan Muara Karang, Jl. Pluit Karang Ayu Barat No.1, Jakarta Utara 14450, Indonesia
  • Rossyaila Matsna Muslimawati Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10 Bandung 40132, Indonesia
  • Mohammad Kemal Agusta Quantum and Nano Technology Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10 Bandung 40132, Indonesia
  • Muhammad Haris Mahyuddin Quantum and Nano Technology Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10 Bandung 40132, Indonesia

Keywords:

Sn-based perovskite solar cell, Absorber layer, SCAPS-1D simulation

Abstract

Addressing the critical need to remove harmful lead from commonly used metal halide perovskite solar cells (PSCs), finding efficient and stable lead-free perovskite alternatives is essential. This study presents a performance analysis of lead-free, all-inorganic Sn-based PSCs using SCAPS-1D is presented. The solar cell architecture used in this research is FTO/TiO₂/FASnX₃/PTAA/Au (X = Br, Cl). The results reveal that absorber layer FASnBr3 achieves the highest power conversion efficiency at 19.67%, positioning it as a promising candidate for enhancing perovskite solar cell performance. The suggested device structure and parameters not only advance these simulation efforts but also provide a new strategy for optimizing the structure of lead-free PSCs, thereby opening new pathways for future research in this field.

Downloads

Download data is not yet available.

References

H. Snaith: Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372 (2018).

M.A. Green, A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8, 506 (2014).

J.S. Manser, J.A. Christians, and P.V. Kamat: Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 2956 (2016).

N.G. Park, Perovskite solar cells: an emerging photovoltaic technology, Mater. Today 18 (2015) 65–72

M Roknuzzaman, Jose A. Alarco, H. Wang, A. Du, T. Tesfamichael, K. (Ken) Ostrikov, Computational Materials Science (2019) 169

Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.

M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I.W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, et al., Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells, Science 375, 302 (2022).

W. Gao, C. Chen, C. Ran, H. Zheng, H. Dong, Y. Xia, Y. Chen, W. Huang A-site cation engineering of metal halide perovskites: version 3.0 of efficient tin-based lead-free perovskite solar cells Adv. Funct. Mater., 30 (34) (2020)

Y. Yan, T. Pullerits, K. Zheng, Z. Liang, Advancing tin halide perovskites: strategies toward the ASnX3 paradigm for efficient and durable optoelectronics, ACS. Energy. Lett., 5 (6) (2020), pp. 2052-2086

Yang, X.-Y. Photoenergy and Thin Film Materials; Google Books; John Wiley & Sons: New York, NY, USA, 2019.

Rühle S., Tabulated values of the Shockley–Queisser limit for single junction solar cells, Solar Energy 130 (2016) 139–147.

Thomas, A.S. Film Properties Using Metal Salts Washing for Perovskite Solar Cells. Preprints 2022, 2022070192 (doi: 10.20944/preprints 202207.0192.v1).

S. Zhao, W. Cai, H. Wang, Z. Zang, J. Chen, Small Methods 2021, 5, 2001308

Zhou, Y., & Saliba, M. (2021). Zooming in on Metal Halide Perovskites: New Energy Frontiers Emerge. ACS Energy Letters, 6(8), 2750-2754

F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang and M. G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells, Nat. Photonics, 2015, 8, 489.

N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz and H. J. Snaith, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci., 2014, 7, 3061.

L. J. Wu, Y. Q. Zhao, C. W. Chen, L. Z. Wang, B. Liu and M. Q. Cai, First-principles hybrid functional study of the electronic structure and charge carrier mobility in perovskite CH3NH3SnI3, Chin. Phys. B, 2016, 25, 107202.

I. Chung, B. Lee, J. He, R. P. H. Chang and M. G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency, Nature, 2012, 485, 486.

Z. Xiao, H. Lei, X. Zhang, Y. Zhou, H. Hosono and T. Kamiya, Ligand-Hole in [SnI6] Unit and Origin of Band Gap in Photovoltaic Perovskite Variant Cs2SnI6, Bull. Chem. Soc. Jpn., 2015, 88, 1250.

T. M. Koh, T. Krishnamoorthy, N. Yantara, C. L. Shi, L. We, P. P. Boix, A. C. Grimsdale, S. G. Mhaisalkar and N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications, J. Mater. Chem. A, 2015, 3, 14996.

M. Liao, Bin-Bin Yu, Z. Jin, W. Chen, Y. Zhu, X. Zhang, W. Yao, T. Duan, I. Djerdj, and Z. He, Efficient and Stable FASnI3 Perovskite Solar Cells with Effective Interface Modulation by Low‐Dimensional Perovskite Layer. ChemSusChem. 2019. 12(22).

T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong, Y. Zhang, L. K. Ono, Y. Qi, L. Han, Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High‑Performance Lead‑Free Perovskite Solar Cells, Nano-Micro Lett. (2022) 14:99.

S. Ravishankar, Z. Liu, U. Rau, T. Kirchartz, Multilayer Capacitances: How Selective Contacts Affect Capacitance Measurements of Perovskite Solar Cells, PRX ENERGY 1, 013003 (2022).

R. S. Almufarij, A. Ashfaq, S. Tahir, R. S. Alqurashi, A. H. Ragab, D.E. El-Refaey, S. Mushtaq, E. Ali Shokralla, A. Ali, R. Y. Capangpangan, A. C. Alguno, Improving performance and recombination losses in lead free formamidinium tin based perovskite solar cells, Materials Chemistry and Physics 307 (2023) 128150.

A. Hosen, Md. S. Mian, and S. R. Al Ahmed, Improving the Performance of Lead-Free FASnI3-Based Perovskite Solar Cell with Nb2O5 as an Electron Transport Layer, Adv. Theory Simul. 2023, 6, 2200652.

M. Kumar, A. Raj, A. Kumar, A. Anshul, An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation, Optical Materials 108 (2020) 110213.

S. Kahmann, O. Nazarenko, S. Shao, O. Hordiichuk, M. Kepenekian, J. Even, M. V. Kovalenko, G. R. Blake, and M. A. Loi, Negative Thermal Quenching in FASnI3 Perovskite Single Crystals and Thin Films, ACS Energy Lett. 2020, 5, 2512−2519.

M. Burgelman, K. Decock, S. Khelifi, A. Abass, Thin Solid Films 2013,535, 296.

M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 2000, 361–362, 527.

J. Verschraegen, M. Burgelman, Thin Solid Films 2007, 515, 6276.

K. Decock, S. Khelifi, M. Burgelman, Thin Solid Films 2011, 519, 7481.

K. Decock, P. Zabierowski, M. Burgelman, J. Appl. Phys. 2012, 111, 043703.

B. K. Ravidas, M. K. Roy, D. P. Samajdar, Sol. Energy 2023, 249, 163.

W. Ke, C.C. Stoumpos, M. Zhu, L. Mao, I. Spanopoulos, J. Liu, M. Chen, D. Sarma, Sci. Adv. 2017;3: e1701293.

S. Rai, B. K. Pandey, D. K. Dwivedi, Opt Mater. 2020, 100, 109631.

N. K. Singh, A. Agarwal, T. Kanumuri, T. Varshney, in 2020 IEEE Students Conf. on Eng. & Systems (SCES), IEEE, New York City 2020, pp. 1–6.

G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, E. L. Peltzer Y Blancá, Superlattices Microstruct. 2017, 107, 136.

F. Liu, J. Zhu, J. Wei, Yi Li, M. Lv, S. Yang, B. Zhang, J. Yao, S. Dai, Appl. Phys. Lett. 2014, 104, 253508.

Green, Martin A., et al., Solar cell efficiency tables (Version 61), 2023.

M. Kumar, A. Raj, A. Kumar, A. Anshul, An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation, Optical Materials 108 (2020) 110213

Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871.

Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138.

Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50.

Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169–11186.

Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953–17979.

Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758–1775.

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 57, 1505–1509.

Contoh.

Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188-5192

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

Downloads

Published

2025-01-20

How to Cite

Ramaputra, S., Muslimawati, R. M., Agusta, M. K., & Mahyuddin, M. H. (2025). The Absorber Layer Variation Effect on the Performance of Sn-Based Perovskite Solar Cell. ITB Graduate School Conference, 4(1). Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/234

Issue

Section

Articles