Isolated Microgrid Reliability Using State Space Analysis

Authors

  • Ryandi Ryandi School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jl. Ganeca 10, Bandung, Indonesia
  • Kevin Marojahan B.N. School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jl. Ganeca 10, Bandung, Indonesia
  • Nanang Hariyanto School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jl. Ganeca 10, Bandung, Indonesia

Keywords:

availability, expected lifetime, isolated microgrid, Markov process, state space, reliability

Abstract

Renewable energy has grown in recent years. It has benefits to electrify islands in Indonesia, with many islands located in frontier, remote, and disadvantaged areas. Solar PV systems for source renewable energy and energy storage systems using batteries are components for an isolated microgrid. Many studies evaluate the reliability of a hybrid system and a large power using the software. This paper describes the modeling reliability of an isolated microgrid based on solar PV, battery, solar charge controller, and inverter. It presents the reliability of an isolated microgrid using state-space analysis with the Markov process. An isolated microgrid is modeled for 3 cases, where the first case does not have maintenance, the second case only has repaired for battery, and the third case has complete maintenance by the utility. It aims to present the reliability, availability and expected lifetime of the system. In this study, reliability data uses existing literature. It is calculated using MATLAB software. The sensitivity analysis is conducted to show the effect of the components' variation of failure rates and repair rates.

Downloads

Download data is not yet available.

References

Kementerian Energi dan Sumber Daya Mineral Republik Indonesia, Ringkasan RENSTRA 2020-2024. Jakarta, 2020.

Peraturan Presiden RI, Perpres No. 22 Tahun 2017 tentang Rencana Umum Energi Nasional. Indonesia, pp. 6, 2017.

Kementerian Energi dan Sumber Daya Mineral, Peraturan Menteri Energi dan Sumber Daya Mineral tentang Rencana Strategis Kementerian Energi dan Sumber Daya Mineral tahun 2020-2024. Jakarta, 2020.

International Electrotechnical Commission, Grid integration of large-capacity Renewable Energy sources and use of large-capacity Electrical Energy Storage, 2012.

D. Quansah, M. Adaramola, G. Takyi, & I. Edwin, Reliability and Degradation of Solar PV Modules—Case Study of 19-Year-Old Polycrystalline Modules in Ghana, Technologies, 5(2), p. 22, 2017, DOI: 10.3390/technologies5020022.

K. K. Jagtap, G. Patil, P. K. Katti, & S. B. Kulkarni, Techno-economic modeling of wind-solar PV and wind-solar PV-biomass hybrid energy system, in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1–6, 2016 DOI: 10.1109/PEDES.2016.7914546.

M. Dhimish & A. Alrashidi, Photovoltaic degradation rate affected by different weather conditions: A case study based on PV systems in the UK and Australia, Electronics, 9(4), 2020, DOI: 10.3390/electronics9040650.

T. Li, Reliability evaluation of photovoltaic system considering inverter thermal characteristics, Electronics, 10(15), pp. 1–15, 2021, DOI: 10.3390/electronics10151763.

N. R. Wheeler, Data Science Study Protocols for Investigating Lifetime and Degradation of PV Technology Systems,” in 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC), pp. 2–6, 2014.

M. Perdue & R. Gottschalg, Energy yields of small grid connected photovoltaic system: Effects of component reliability and maintenance, IET Renew. Power Gener., 9(5), pp. 432–437, 2015, DOI: 10.1049/iet-rpg.2014.0389.

S. Kurtz, J. Granata, & M. Quintana, Photovoltaic-Reliability R&D Toward a Solar-Powered World Preprint, in Conference Paper NREL/CP-520-44886, 2009, no. August.

E. Araujo, P. Pereira, J. Dantas, & P. Maciel, Dependability impact in the smart solar power systems: An analysis of smart buildings, Energies, 14(1), pp. 1–24, 2021, DOI: 10.3390/en14010124.

S. L. Gbadamosi & N. I. Nwulu, Optimal power dispatch and reliability analysis of hybrid CHP-PV-wind systems in farming applications, Sustainability, 12(19), 2020, DOI: 10.3390/su12198199.

P. Zhang, Y. Wang, W. Xiao, & W. Li, Reliability evaluation of grid-connected photovoltaic power systems, IEEE Trans. Sustain. Energy, 3(3) pp. 379–389, 2012, DOI: 10.1109/TSTE.2012.2186644.

R. N. Billinton & Roy, Allan, Reliability Evaluation of Power Systems, 2nd ed. New York: Plenum Press, 1996.

Z. Tian & A. A. Seifi, Reliability analysis of hybrid energy system, Int. J. Reliab. Qual. Saf. Eng., 21(3), pp. 1–9, 2014, DOI: 10.1142/S0218539314500119.

H. Y. Phoon, Generation System Reliability Evaluations with Intermittent Renewables, University of Strathclyde, 2006.

B. Kekezoglu, O. Arikan, A. Erduman, E. Isen, A. Durusu, and A. Bozkurt, Reliability analysis of hybrid energy systems: Case study of davutpasa campus, in IEEE EuroCon 2013, 2013, no. July, pp. 1141–1144, DOI: 10.1109/EUROCON.2013.6625124.

M. M. Ur Rashid, Development of home energy management scheme for a smart grid community, Energies, 13(17), 2020, DOI: 10.3390/en13174288.

G. A. Xavier, D. O. Filho, J. H. Martins, P. M. de B. Monteiro, & A. S. A. C. Diniz, Simulation of distributed generation with photovoltaic microgrids-Case study in Brazil, Energies, 8(5), pp. 4003–4023, 2015, DOI: 10.3390/en8054003.

A. Sayed, M. El-Shimy, M. El-Metwally, & M. Elshahed, Reliability, availability and maintainability analysis for grid-connected solar photovoltaic systems, Energies, 12(7), 2019, DOI: 10.3390/en12071213.

M. S. Pahwa & A. Rahman, Design and estimation of reliability of an off-grid solar photovoltaic (PV) power system in South East Queensland, in 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2017, pp. 944–948, DOI: 10.1109/IEEM.2017.8290031.

A. A. E. Tawfiq, M. O. A. El-Raouf, M. I. Mosaad, A. F. A. Gawad, & M. A. E. Farahat, Optimal Reliability Study of Grid-Connected PV Systems Using Evolutionary Computing Techniques, IEEE Access, 9, pp. 42125–42139, 2021, DOI: 10.1109/ACCESS.2021.3064906.

K. Zheng, Z. Zhang, L. Fang, Y. Song, & X. Huang, Reliability Evaluation of Software Defined Photovoltaic Energy System, in 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), 2020, pp. 116–119, DOI: 10.1109/DCABES50732.2020.00038.

S. Baschel, E. Koubli, J. Roy, & R. Gottschalg, Impact of component reliability on large scale photovoltaic systems’ performance, Energies, 11(6), 2018, DOI: 10.3390/en11061579.

A. F. Nematollahi, H. Shahinzadeh, H. Nafisi, B. Vahidi, Y. Amirat, & M. Benbouzid, Sizing and sitting of DERs in active distribution networks incorporating load prevailing uncertainties using probabilistic approaches, Appl. Sci., 11(9), 2021, DOI: 10.3390/app11094156.

E. Collins, M. Dvorack, J. Mahn, M. Mundt, & M. Quintana, Reliability and availability analysis of a fielded photovoltaic system, Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 002316–002321, 2009, DOI: 10.1109/PVSC.2009.5411343.

D. Rebollal, M. Carpintero-Rentería, D. Santos-Martín, & M. Chinchilla, Microgrid and distributed energy resources standards and guidelines review: Grid connection and operation technical requirements, Energies, 14(3), 2021, DOI: 10.3390/en14030523.

P. Balducci, K. Mongird, D. Wu, D. Wang, V. Fotedar, & R. Dahowski, An evaluation of the economic and resilience benefits of a microgrid in Northampton, Massachusetts, Energies, 13(18), 2020, DOI: 10.3390/en13184802.

S. Kiros, Development of stand-alone green hybrid system for rural areas, Sustainability, 12(9), pp. 1–14, 2020, DOI: 10.3390/su12093808.

S. Almazrouei, A. K. Hamid, & M. Shamsuzzaman, Predictive energy management in large-scale grid connected PV-batteries system, in 2018 5th International Conference on Renewable Energy: Generation and Application (ICREGA), 2018, pp. 315–318, DOI: 10.1109/ICREGA.2018.8337601.

R. Ross, Reliability Analysis for Asset Management of Electric Power Grids. New Jersey: Wiley - IEEE Press, 2019.

Downloads

Published

2022-10-12

How to Cite

Ryandi, R., Marojahan B.N., K., & Hariyanto, N. (2022). Isolated Microgrid Reliability Using State Space Analysis. ITB Graduate School Conference, 1(1), 208–222. Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/20

Issue

Section

Articles