Improvement Activity of Antioxidant, Tyrosinase Inhibition, And Anti-Inflammatory of (Phaleria Macrocarpa (Scheff.) Boerl) Seed Extracts in Nanoemulsion Dosage Form: In Vitro and in Vivo Studies

Authors

  • Agustin E Pharmaceutical Technology Research Group, School of Pharmacy, Bandung Institute of Technology, Indonesia
  • Mauludin R Pharmaceutical Technology Research Group, School of Pharmacy, Bandung Institute of Technology, Indonesia
  • Insanu M Pharmaceutical Technology Research Group, School of Pharmacy, Bandung Institute of Technology, Indonesia

Keywords:

antioxidant, ethyl acetate, Mahkota Dewa seed, nanoemulsion, tyrosinase, anti-inflammatory, rat

Abstract

The Mahkota Dewa seed (Phaleria macrocarpa) has various phytochemical compounds and low pharmacological activities including antioxidants, tyrosinase enzyme inhibition, and anti-inflammatory. The production of nanoemulsion preparations is expected to improve the activity of the extract of Mahkota Dewa seed with ethyl acetate. This study aims to test the mahkota dewa seed nanoemulsion (NE-BMD) against antioxidant activity using the DPPH method, tyrosinase inhibition, and anti-inflammatory using the protein denaturation method with BSA (Bovine Serum Albumin) in vitro. This research is followed by in vivo testing using Wistar white male rats induced by 1% carrageenan for anti-inflammatory activity in selected samples of NE-BMD. The preparation of the NE-BMD was accomplished using the sonication method and followed by selecting two formulation. The formulation contains 3% extract, 1% oleic acid, 12% Cremophor® RH40, and 2% PEG 400. The results of characterization and evaluation of NE-BMD preparations showed that the particle size and polydispersity index were 26.83±1.27 nm (IP: 0.36±0.03) for the F7 formulation and 30.73±1.50 nm (IP: 0.32±0.06) for the F8 formulation. The result of the TEM evaluation showed a spherical globule morphology of the NE-BMD. The antioxidant activity test showed the IC50 value of the BMD extract was 207.01±23.02 μg/mL, and the NE-BMD F7 and F8 were 15.62±1.40 μg/mL and 28.39±4.69 μg/mL, respectively. The testing of tyrosinase enzyme inhibitory activity showed the IC50 values of BMD extract was 938.91±43.98 μg/mL, NE-BMD preparations F7 and F8 were 587.17±25.36 μg/mL and 692.79±30.63 μg/mL, respectively. The protein denaturation testing showed the IC50 values of BMD extract was 401.46±1.01 μg/mL and NE-BMD preparations F7 and F8 were 94.39±1.24 μg/mL and 196.63±1.61 μg/mL. Meanwhile, in vivo anti-inflammatory testing with doses 1 g/kgBW for BMD extract and NE-BMD F7 preparations showed that significantly (p<0.05) improved anti-inflammatory activity compared to single extracts BMD, based on the value of percent protein denaturation inhibition and in vivo test. The results showed that NE-BMD preparations improve several pharmacological activities.

Downloads

Download data is not yet available.

References

Basar, N., Othman, SNAM., Nahar., L. & Sarker, SD., The Ethnomedicinal, phytochemical, and pharmacological properties of Phaleria macrocarpa (Scheff). Boerl. Tang Humanitas medicine, 2014.

Chandra, P., dan Arora, D. S. (2019): Antioxidant Compounds Derived from Plants, Description and Mechanism of Phytochemicals, (January).

Charissa, M., Djajadisastra, J. & Elya, B., Uji Aktivitas Antioksidan dan Penghambatan Tirosinase serta Uji Manfaat Gel Ekstrak Kulit Batang Taya (Nauclea subdita) terhadap Kulit, Jurnal Kefarmasian Indonesia, 6(2), 98–107, 2017.

Chhabra, G., Chuttani, K., Mishra, A.K. & Pathak, K., Design and Development of Nanoemulsion Drug Delivery System of Amlodipine Besilate for Improvement of Oral Bioavailability, Drug Development and Industrial Pharmacy, 37(8), pp. 907-916, 2011.

Chick, H, Martin, CJ. (1910). On the heat coagulation of protein. J Physiol. (4):404-30.

Farida, Y., Rahmat, D., dan Widia Amanda, A. (1264): Uji Aktivitas Antiinflamasi Nanopartikel Ekstrak Etanol Rimpang Temulawak (Curcuma xanthorrhiza Roxb.) dengan Metode Penghambatan Denaturasi Protein (Anti-Inflammation Activity Test of Nanoparticles Ethanol Extract of Temulawak Rhizome (Curcuma xanthorrhi, Jurnal Ilmu Kefarmasian Indonesia, 16(2), 225–230.

Halliwel, B. dan Gutteridge, J. M. C. (1999). Free Radical in Biology and Medicine. New York: Oxford Unyversity Press.

Harimurti, N., Nasikin, M., dan Mulia, K. (2021): Water-in-Oil-in-Water Nanoemulsions Containing Temulawak (Curcuma xanthorriza Roxb) and Red Dragon Fruit (Hylocereus polyrhizus) Extracts, Molecules (Basel, Switzerland), 26(1).

Harwansh, R. K., Deshmukh, R., dan Rahman, M. A. (2019): Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives, Journal of Drug Delivery Science and Technology, 51(February), 224–233.

Hendra, R., Ahmad, S., Sukari, A., Shukor, M. Y., & Oskoueian, E. (2011): Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit. International Journal of Molecular Sciences, 12(6), 3422–3431.

Hendra, R., Ahmad, S., Oskoueian, E., Sukari, A., dan Shukor, M. Y. (2011): Antioxidant, Anti-inflammatory and Cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff Fruit, BMC Complementary and Alternative Medicine, 11.

Henry, J. V. L., Fryer, P. J., Frith, W. J., Norton, I. T. (2010). The influence of phospholipids and food proteins on the size and stability of model sub-microemulsions. Food Hydrocolloids, 24(1), 66-71.

Gao, F., Zhang, Z., Bu, H., Huang, Y., Gao, Z., Shen, J., Zhao, C., dan Li, Y. (2011): Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: Performance and mechanism, Journal of Controlled Release, 149(2), 168–174.

Gupta, R.B. dan Kompella, U.B. (2006): Nanoparticle Technology for Drug Delivery, Taylor & Francis Group, New York.

Gallego J, Sánchez-Campos S, Tunon M. (2007): Anti-inflammatory properties of dietary flavonoids. Nutrición Hospitalaria, 22:287-293.

Gordon, M. H., The mechanism of antioxidants action in vitro. In b. J. F. Hudson,.Editor.Food antioxidants. London: Elvesier Applied Science, 1990.

Irianti, T., Sulaiman, T. N. S., Fakhrudin, N., Astuti, S., Testikawati, N., Farida, S., dan Khasanah, S. R. N., Pembuatan Sediaan Tabir Surya Ekstrak Etanol Buah Mahkota Dewa (Phaleria macrocarpa), Aktivitas Inhibisi Fotodegradasi Tirosin dan Kandungan Fenolik Totalnya, Majalah Farmaseutik, 15(2), 43, 2019.

Jahan, N., Aslam, S., Rahman, K. ur, Fazal, T., Anwar, F., & Saher, Formulation and characterisation of nanosuspension of herbal extracts for enhanced antiradical potential. Journal of Experimental Nanoscience, 11(1), pp. 72–80, 2016.

Juarna, K.S., Antioxidant Activities of Green Bean and Roasted Bean Arabica Coffee (Coffea Arabica L.) From Three Regions in Indonesia Using Dpph and Frap Methods, Tesis Program Megister, Institut Teknologi Bandung, 18-20, 2018.

Kotta, S., Khan, A. W., Pramod, K., Ansari, S. H., Sharma, R. K., dan Ali, J., Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs, Expert Opinion on Drug Delivery, 9(5), 585–598, 2012.

Lay, M. M., Karsani, S. A., Banisalam, B., Mohajer, S., & Abd Malek, S. N., Antioxidants, phytochemicals, and cytotoxicity studies on Phaleria macrocarpa (Scheff.) Boerl Seeds, BioMed Research International, 2014.

Lourenço, S. C., Moldão-Martins, M., dan Alves, V. D., Antioxidants of natural plant origins: From sources to food industry applications, Molecules, 24(22), pp. 14–16, 2019.

Makadia H., Self-nanoemulsifying drug delivery system (SNEDDS): future aspects. Asian J. Pharm. Res., 3(1), pp. 21-27, 2013.

Mamatha, S., Reddy, P. P., Voruganti, A., Reddy, V. A. & Boggula, N., Phaleria macrocarpa (scheff.) Boerl: A Phytochemical and Pharmacological Review, 5(3), pp. 51–61, 2020.

Mazzarino, L., da Silva Pitz, H., Lorenzen Voytena, A. P., Dias Trevisan, A. C., Ribeiro-Do-Valle, R. M. & bMaraschin, M., Jaboticaba (Plinia peruviana) extract nanoemulsions: development, stability, and in vitro antioxidant activity, Drug Development and Industrial Pharmacy, 44(4), 643–651, 2018.

Momtaz, S., Lall, N., dan Basson, A., Inhibitory activities of mushroom tyrosine and DOPA oxidation by plant extracts, South African Journal of Botany, 74(4), pp. 577–582, 2008.

Molyneux, P., The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal Science Technology, 26(2), pp. 211-219, 2004.

Muller, R.H. & Akkar, A., Drug Nanocrystals for Poorly Soluble Drugs, Encyclopedia of Nanoscience and Nanotechnology, 2, pp. 627-638, 2004.

Mycek M, Harvey, dan Champe. (2001). Farmakologi Ulasan Bergambar Edisi 2. Jakarta: Widia Medika.

Nijveldt, R. J., E. van Nood, D.E.C. van Hoom, P. G Boelens, K. van Norren, P.A.M. van Leeuwen., Flavonoids; a review of probable mechanisms of action and potential applications, American Journal of Clinical and Nutrition, 74, pp. 418-425, 2001.

Okonogi, S. dan Chaiyana, W., Enhancement of anti-cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique. Drug Discoveries & Therapeutics, 6(5), pp. 249–55, 2012.

Onoue, S., Takahashi, H., Kawabata, Y., Seto, Y., Hatanaka, J., Timmermann, B., danYamada, S., Formulation Design and Photochemical Studies on Nanocrystal Solid Dispersion of Curcumin with Improved Oral Bioavailability, Journal of Pharmaceutical Sciences, 99, 1871-1881, 2009.

Pourmorad, F., Hosseinimehr, S.J. and Shahabimajd, N., Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African journal of biotechnology, 5(11). pp 1142-1145, 2006.

Rinaldi, F., Hanieh, P. N., Longhi, C., Carradori, S., Secci, D., Zengin, G., Ammendolia, M. G., Mattia, E., Del Favero, E., Marianecci, C., dan Carafa, M. (2017): Neem oil nanoemulsions: characterisation and antioxidant activity, Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1265–1273, 2017.

Rinayanti, A., Dewanti, E., dan H, M. A., Uji Efek Antiinflamasi Fraksi Air Daun Mahkota Dewa (Phaleria macrocarpa (Shecff.) Boerl.) terhadap Tikus Putih (Rattus norvegicus L.), Pharmaceutical Sciences and Research, 1(2), 78–85, 2014.

Rizkayanti, R., Diah, A. W. M. & Jura, M. R., Uji Aktivitas Antioksi dan Ekstrak Air dan Ekstrak Etanol Daun Kelor (Moringa Oleifera LAM), Jurnal Akademika Kimia, 6(2), 125, 2017.

Saberi, A. H., Fang, Y., & McClements, D. J. (2013). Effect of glycerol on formation stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. Journal of Colloid and Interface Science, 411, 105-113.

Rowe, R.C., Sheskey, P.J.,dan Quinn, M.E. (2009) :Handbook of Pharmaceutical Excipients 6th Edition, Pharmaceutical Press and American Pharmacist Association, London.

Saez, V. dan Mason, T.J. (2009): Sonoelectrochemical Synthesis of Nanoparticles, Molecules, 14, pp. 4284-4299.

Scheff, M., Leaves, B., Hepg, I. N., & Lines, C. (2011). Effendy et.al., 2(7), 1700–1706.

Shah B.N., Seth K., and Mheswari K.M. (2011). A review on medical plants as source of anti-inflamattory agents. Journal Research of Medicinal. 5(2):101-111.

Shahidi, F., dan Zhong, Y. (2015): Measurement of antioxidant activity, Journal of Functional Foods, 18, 757–781.

Shi, J. (2002): Steric Stabilization, CISM Literature Review, 06502, 1-43.

Suciati, T., Aliyandi, A., dan Satrialdi (2014): Development of transdermal nanoemulsion formulation for simultaneous delivery of protein vaccine and artin-m adjuvant, International Journal of Pharmacy and Pharmaceutical Sciences, 6(6), 536–546.

Suprapti, T., Louisa, M., Tedjo, A., & Handjari, D. R. (2014): Antiinflammatory Effect of Mahkota Dewa (Phaleria macrocarpa (Scheff.) Boerl.) Leaves Extract on Colon Carcinogenesis Induced by Azoxymethane and Dextran Sodium Sulphate: Focus on the iNOS, β - catenin and COX-2 Expression. 02(04), 511–527.

Thanasukarn, P., Pongsawatmanit, R., & McClements, D. J. (2004a). Impact of fat and water crystallization on the stability of hydrogenated palm oil-in-water emulsions stabilized by whey protein isolate. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 246(1e3), 49e59.

Tiedtke, J., Morel, J., Marks, O. (2004): Depigmentation factor Bioflavonoids—A safe and effective skin lightening based on encapsulated citrus bioflavonoids. Cosmetochem International Ltd., Cosmetochem France.

Tiwari, S.B., Shenoy, D.B., dan Amiji, M.M. (2006): Nanoemulsion Formulations for Improved Oral Delivery of Poorly Soluble Drug, NSTI-Nanotech, 1, 475-478.

Wang, G.D., Mallet, F.P., Ricard, F., dan Heng, J.Y.Y. (2011): Pharmaceutical Nanocrystals, Curr Opin Chem Eng, 1, 1-6.

Zeng, F., Wang, D., Tian, Y., Wang, M., Liu, R., Xia, Z., dan Huang, Y. (2021): Nanoemulsion for Improving the Oral Bioavailability of Hesperetin: Formulation Optimization and Absorption Mechanism, Journal of Pharmaceutical Sciences, 110(6), 2555–2561.

Published

2022-10-12

How to Cite

E, A., R, M., & M, I. (2022). Improvement Activity of Antioxidant, Tyrosinase Inhibition, And Anti-Inflammatory of (Phaleria Macrocarpa (Scheff.) Boerl) Seed Extracts in Nanoemulsion Dosage Form: In Vitro and in Vivo Studies. ITB Graduate School Conference, 1(1), 171–186. Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/17

Issue

Section

Articles