The Potential of Clay Material as CO2 Capture Sorbent in the Pressure Temperature Swing Adsorption (PTSA) Process

  • Wahid Ahmadi Postgraduate Master of Mechanical Engineering, Mercu Buana University, Jl. Meruya Selatan No. 1 Kembangan West Jakarta 11650
  • Deni Shidqi Khaerudini Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Gd. 440 Puspitek Serpong Area, South Tangerang 15314, Banten
Keywords: CO2, capture, sorbent, emissions

Abstract

The current state of increasing CO2 emissions is become challenging due to reduce emissions targeting policy. One of the processes of catching CO2 is pressure temperature swing adsorption (PTSA) with sorbent clay as an adsorbent material. The consideration of clay material is due to large availability in Indonesia and its CO2 adsorption potential capacity as good as the Zeolite 13X of 0.7 mol/kg. Pretreatment is required for bentonite to change its structure so that it increases its CO2 adsorption capacity. After going through the initial treatment process, the capacity adsorption CO2 of bentonite increases from 6 to 47 x 10-6 mol/kg due the changing of surface area and pore volume.

References

[1] M, Mokhta, Z., Ong, MY., Salman, B., Nomanbhay, S., Salleh, SF., Chew, KW. Simulation Studies on Microwave-assisted Pyrolysis of Biomass for Bioenergy Production with Special Attention on Waveguide Number and Location. Energy. 190: 116474. 2020.
[2] Antolini, D., Ail, SS., Patuzzi, F., Grigiante, M., Baratieri, M. Experimental Investigations of Air-CO2 Biomass Gasification in Reversed Downdraft Gasifier. Fuel. 253 :1473: 81. 2019.
[3] Ma, Z., Liu, W., which, W., Li, W., Han, B. Temperature Effects on Redox Potentials and Implications to Semiconductor Photocatalysis. Fuel. 286(P2) :119490. 2021.
[4] Zachary, L., Zhao, S., Matthew, A., Sam, T. Carbon Capture Materials and Technologies: A Review. Current Research in Materials Chemistry. 3(1): 108. 2021.
[5] Qin, Y., Niu, G., Wang, X., Luo, D., Duan, Y. Status of CO2 Conversion Using Microwave Plasma. J CO2 Util. 28: 283–91. 2018.
[6] Ideris, F., Shamsuddin, AH., Nomanbhay, S., Kusumo, F., Silitonga, USA. , Ong, MY. Optimization of Ultrasound-assisted O il Extraction from Canarium Odontophyllum Kernel as a Novel Biodiesel Feedstock. J Cleaner Prod. 288: 125563. 2021.
[7] D, S, Alqarni. Ru-zirconia Catalyst Derived from MIL140C for Carbon Dioxide Conversion to Methane. Catalysis Today. 2020.
[8] M, Biset-Peir ́o., J, Guilera., T, Zhang., J, Arbiol., T, Andreu. On the Role of Ceria in Ni-Al2O3 Catalyst for CO2 Plasma Methanation. Applied Catalysis A: General. 575: 223–229. 2018.
[9] Hussin, F., Aroua, MK. Recent Trends in the Development of Adsorption Technologies for Carbon Dioxide Capture: A Brief Literature and Patent Reviews (2014–2018). J Cleaner Prod. 253: 119707. 2020.
[10] Central Bureau of Statistics. "Greenhouse Gas and MPV Inventory Report, Ministry of Environment and Forestry of the Republic of Indonesia". (July 24, 2022). https://www.bps.go.id/statictable/2019/09/24/2072/emisi-gas-rumah-kaca-menurut-jenis-sektor-ribu-ton-CO2e-2001-2017.html
[11] Ahmed, A. M., Anirudh, K., Ali, A. R., Fateme, R. Carbon Capture and Utilization Update. Energy Technology. 5: 1 – 17. 2017.
[12] Ahmed, I. O., Mahmoud, H., Abdel, M., Ahmed, M. E., David, W. R. Recent Advances in Carbon Capture Storage and Utilisation Technologies: a Review. Environmental Chemistry Letters. 19: 797–849. 2021.
[13] Ruikai, Z., Longcheng, L., Li, Z., Shuai, D., Shuangjun, L., Yue, Z., Hailong, L. Techno-Economic Analysis of Carbon Capture from a Coal-Fired Power Plant Integrating Solar-Assisted Pressure-Temperature Swing Adsorption (PTSA). Journal of Cleaner Production. 214: 440-451. 2019.
[14] Wang, L., Liu, Z., Li, P., Yu, J., Rodrigues, A.E., Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13XAPG by hybrid VTSA process. Chem. Eng. J. 197: 151-161. 2012.
[15] Chaffee, AL., Knowles, GP., Liang, Z., Zhang, J., Xiao, P., Webley, PA. CO2 Capture by Adsorption: Materials and Process Development. International Journal of Greenhouse Gas Control. 1:11-18. 2007. (Journal)
[16] Lee, SY., Park, SJ. A Rreview on Solid Adsorbents for Carbon Dioxide Capture. J. Ind. Eng. Chem. 23:1-11. 2015.
[17] Wu, B., Zhang, X., Xu, Y., Bao, D., Zhang, S. Assessment of the Energy Consumption of the Biogas Upgrading Process with Pressure Swing Adsorption Using Novel Adsorbents. J. Clean. Prod. 101: 251-261. 2015.
[18] Skarstrom, CW. US Patent. No. 2,944,627. 1960.
[19] Guerrin de Montgareuil, P., Domine, D. U.S. Patent. No. 3,155,468. 1964.
[20] Cheu, K., Jong-Nam, K., Yun-Jong, Y., Soon-Haeng, C. Fundamentals of Adsorption: Proceedings of the Fifth International Conference on Fundamentals of Adsorption. Le Van, M. D., Ed., Kluwer Academic Publishers: Boston. 203-210. 1996.
[21] Dong, F., Lou, H., Goto, M., Hirose, M. Purif Technol. 15:31-40. 1990.
[22] Sircar, S., Golden, T. C. Ind. Eng. Chem. Res. 34: 2881- 2888. 1995.
[23] Daeho, K., Siriwardane, RV., Biegler, LT. Ind. Eng. Chem. Res. 42:39-348. 2003.
[24] DLHK banten province. "Zeolite Sa Adsorbent Logam Bclosely". (July 24,2022) https://dlhk.bantenprov.go.id/read/article/24/zeolit_sebagai_adsorben_logam_berat.html.
[25] Jiangxi OIM Chemical Co., Ltd AL. "Product Adsorbents-MS Series". (July 24,2022) https://www.oimchem.com/adsorbents-ms-series/13x-apg-III-molecular-sieve.html.
[26] Martra, G., Ocule, R., Marchese, L. Centi G and Coluccia S. Catal Today. 73:83. 2002.
[27] Barthomeuf, D., Mallmann, A. Innovation in Zeolite Materials Science. Studies in Surface Science and Catalysis. 37. 1988.
[28] Doskocil, E, J., Davis, R, J. J. Catal. 188: 353. 1999.
[29] Huang, M., Kaliaguine, S. J. Chem. Soc. Faraday Trans. 88:751. 1992.
[30] Tsuji, H., Yagi, F., Hattori, H. Chem. Lett.; 1881. 1991.
[31] Chen, C., Park, DW., Ahn, WS. CO2 Capture Using Zeolite 13X Prepared from Bentonite. Appl. Surf. Sci. 292: 63-67. 2014.
[32] Siriwardane, RV., Shen, M., Fisher, EP., Poston, JP. Energy Fuels. 15: 279-284. 2001.
[33] Inui, T., Okugawa, Y., Yasuda, M. Ind. Eng. Chem. Res. 27: 1103- 109. 1988.
[34] Akten, ED., Siriwardane, R., Sholl, DS. Energy Fuels. 17:977-983. 2003.
[35] Ranjani, V. S., Ming-Shing, S., Edward, P. F. Adsorption of CO2 on Zeolites at Moderate Temperatures, Energy & Fuels. 19: 1153-1159. 2005.
[36] F. Tomul. Adsorption and Catalytic Properties of Fe/Cr-Pillared Bentonites. Chemical Engineering Journal. 185 –186 (185): 380–390. 2012.
[37] Suquet, H., de la Calle, C., Pezerate, H. Swelling and Structural Organization of Saponite. Clay Clay Miner. 23: 1-9. 1975.
[38] Ali, S. Thermo-hydro-mechanical Characterisation and Modelling of Wyoming Granular Bentonite. Techinical report. 15-05: 35. 2015.
[39] Arfaoui, S., Frini-Srasra, N., Srasra, E. Application of Clays to Treatment of Tannery S ewages. Desalination. 185: 419-426. 2005.
[40] Hamdi, N., Srasra, E. Remove of Fluoride from Acidic wastewater by Clay Mineral Effect of Solid–liquid Ratios. Desalination. 206: 238-244. 2007.
[41] Al-Asheh, S., Banat, F., Abu-Aitah, L. Adsorption of Phenol Using Different Types of Activated Bentonites. Sep. Purif. Technol. 33: 1-10. 2003.
[42] Fu-Chuang, H., Jiunn-Fwu, L., Chung-Kung, L., Huang-Ping, C. Effects of Cation Exchange on the Pore and Surface Structure and Adsorption Characteristics of Montmorillonite. Colloid Surf. A: Physicochem. Eng. Aspects. 239: 41-47. 2004.
[43] Min-Yu, T., Su-Hsia, L., Removal of Basic Dye from Water onto Pristine and HCl Activated Montmorillonite in fixed beds. Desalination. 194: 156-165. 2006.
[44] Okada, K., Arimitsu, N., Kameshima, Y., Akira, N., Kenneth, MacKenzie, JD. Solid A cidity of 2:1 Type Clay Minerals Activated by Selective Leaching. Appl. Clay Sci. 31: 185-193. 2006.
[45] Pinnavaia, T.J. Intercalated Clay Catalysts. Science. 220: 365-371. 1983.
[46] Carrado, K, A. Synthetic Organoand Polymer-clays: preparation, characterization, and materials applications. Appl. Clay Sci. 17: 1-23. 2000.
[47] Falaras, P., Kovanis, I., Lezou, F., Seiragakis, G. Cottonseed Oil Bleaching by Acid Activated Montmorillonite. Clays Clay Miner. 34: 221-232. 1999.
[48] Hussin, F., Aroua, MK., David, WMAW. Textural Characteristics, Surface Chemistry and Activation of Bleaching Earth: a Review. Chem. Eng. J. 170: 90-106. 2011.
[49] Chao, C., Dong, WP., Wha, SA. Surface Modification of a LowCost Bentonite for Post-Combustion CO2 Capture. Applied Surface Science. 283: 699– 704. 2013.
[50] Khoirina, D. N., Dian, M. W., Daryani, Y. H. Kajian A activation H2SO4 Terhadap Proses Pemilaran Al2O3 Pada Lempung Alam Pacitan, ALCHEMY Journal of Chemical Research. 12 (2): 190 – 203. 2016.
[51] Reda, M., Nacer, D., Nadia, B., Fatima, O., Faiza, Z. Study of Adsorption Properties of Bentonite Clay. Intech Open. 978-1-83968-604-7: 2. 2021.
Published
2023-06-30
How to Cite
Ahmadi, W., & Khaerudini, D. S. (2023). The Potential of Clay Material as CO2 Capture Sorbent in the Pressure Temperature Swing Adsorption (PTSA) Process. ITB Graduate School Conference, 2(2), 380-393. Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/126
Section
Articles