Synthesis of Silica Nanoparticle and Cd-Based Carboxyl Quantum Dots (SiNP@QDs) Conjugates as Biosensing Platform: A Pleriminary Study

  • Diaz Ayu Widyasari Master Program of Nanotechnology, Graduate School, Institut Teknologi Bandung (ITB), Jl. Ganesha 10, Bandung 40312, West Java, Indonesia
  • Fauzan Aulia Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK, Serpong, South Tangerang 15314, Banten, Indonesia
  • Agustina Sus Andreani Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK, Serpong, South Tangerang 15314, Banten, Indonesia
  • Rizna Triana Dewi Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center (CSC), Bogor, West Java 16911, Indonesia
  • Ni Luh Wulan Septiani Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • Brian Yuliarto Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
  • Siti Nurul Aisyiyah Jenie Research Centre for Chemistry, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK, Serpong, South Tangerang 15314, Banten, Indonesia
Keywords: Biosensors, E. coli, quantum dots, silica nanoparticles, silanization

Abstract

Silica nanoparticles (SiNP) are one of the most promising materials for biosensors. The introduction of functional groups make silica nanoparticles highly versatile. In this work, the silica nanoparticle was synthesized using sol-gel method from natural based precursor, which is geothermal precipitate. Based on the characterization result of SiNP, the specific surface area is 138 m2/g and nanoparticle size is 43.56 nm. The XRD result shows SiNP in amorphous phase. The surface of SiNP was modified using silanization method with 3-Aminopropyl triethoxysilane (APTES) as an amino silane to immobilize the quantum dot and E coli antibody. The FTIR analysis shows that amine group in SiNP@QDs surface reacted with carboxyl group of antibodies indicated by the presence of a peak at the wavelength of 1620 cm-1. The detection of E. coli bacteria was carried out using fluorescence spectroscopy through the reduced of maximum intensity of SiNP@QDs-Ab before and after E coli addition at wavelength of 595 nm. The fluorescence intensity of SiNP@QDs-Ab is 633.10 a.u and the intensity is reduced to 281.86 a.u. in the presence of E. coli (1 x 107 CFU/mL).

References

[1] H. Du, Z. Li, Y. Wang, Q. Yang, & W. Wu, Nanomaterial-based Optical Biosensors for the Detection of Foodborne Bacteria, Food Rev. Int., 38(4), pp. 655–684, 2022. (Journal)
[2] H. Sharma & R. Mutharasan, Review of biosensors for foodborne pathogens and toxins Sensors Actuators, B Chem., 183, pp. 535–549, 2013. (Journal)
[3] E. Bagheri., Silica–Quantum Dot Nanomaterials as a Versatile Sensing Platform, Crit. Rev. Anal. Chem., pp. 1–22, 2020. (Journal)
[4] D. Douroumis, I. Onyesom, M. Maniruzzaman, & J. Mitchell, “Mesoporous silica nanoparticles in nanotechnology,” Crit. Rev. Biotechnol., 48, no. September 2011, pp. 1–17, 2012. (Journal)
[5] M. Mousavi and E. Fini, “Silanization Mechanism of Silica Nanoparticles in Bitumen Using 3-Aminopropyl Triethoxysilane (APTES) and 3-Glycidyloxypropyl Trimethoxysilane (GPTMS),” ACS Sustainable Chemistry and Engineering, 8(8). pp. 3231–3240, 2020. (Journal)
[6] D. A. Widyasari et al., “Conjugation of E.coli antibody with fluorescent natural silica-based nanoparticles: Preparation and characterization,” AIP Conf. Proc., 2382, 2021. (Conference Proceeding)
[7] N. N. Alias, K. A. Yaacob, and C. K. Yew, “Effect of etchant on SOI wafer surface roughness for APTES silanization,” Mater. Today Proc., 17, pp. 700–706, 2019. (Journal)
[8] V. V. Goftman et al., “Synthesis, modification, bioconjugation of silica coated fluorescent quantum dots and their application for mycotoxin detection,” Biosens. Bioelectron., 79, pp. 476–481, 2016. (Journal)
[9] Y. Lv et al., “Silica-encapsulated quantum dots for highly efficient and stable fluorescence immunoassay of C-reactive protein,” Biochem. Eng. J., 137, pp. 344–351, 2018. (Journal)
[10] K. Kajihara, “Recent advances in sol – gel synthesis of monolithic silica and silica-based glasses,” J. Asian Ceram. Soc., 1(2), pp. 121–133, 2013. (Journal)
[11] M. C. Gonçalves, “Sol-gel silica nanoparticles in medicine: A natural choice. design, synthesis and products,” Molecules, 23(8), pp. 1–26, 2018. (Journal)
[12] P. A. Handayani, E. Nurjanah, & W. D. P. Rengga, “Pemanfaatan Limbah Sekam Padi Menjadi Silika Gel,” J. Bahan Alam Terbaruka, 4(2), pp. 55–59, 2015. (Journal)
[13] S. N. A. Jenie, A. Ghaisani, Y. P. Ningrum, & A. Kristiani, “Preparation of Silica Nanoparticles from Geothermal Sludge via Sol-Gel Method,” AIP Conf. Proc., vol. 020008, pp. 1–6, 2018. (Conference Proceeding)
[14] Y. Maulitiva Untoro, D. Ayu Widyasari, E. Supriadi, and S. Nurul Aisyiyah Jenie, “The Effect of Rhodamine B on The Properties of Fluorescent Nanoparticles Derived from Geothermal Silica,” J. Pure Appl. Chem. Res., 9(3), pp. 171–176, 2020. (Conference Proceeding)
[15] V. H. Le, C. N. H. Thuc, and H. H. Thuc, “Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method,” Nanoscale Res. Lett., 8(1), pp. 58, 2013. (Journal)
[16] T. G. Kim, G. S. An, J. S. Han, J. U. Hur, B. G. Park, and S. C. Choi, “Synthesis of size controlled spherical silica nanoparticles via sol-gel process within hydrophilic solvent,” J. Korean Ceram. Soc., 54(1), pp. 49–54, 2017. (Journal)
[17] Z. Qiu, J. Shu, and D. Tang, “Bioresponsive Release System for Visual Fluorescence Detection of Carcinoembryonic Antigen from Mesoporous Silica Nanocontainers Mediated Optical Color on Quantum Dot-Enzyme-Impregnated Paper,” Anal. Chem., 89(9), pp. 5152–5160, 2017. (Journal)
[18] S. Mura et al., “FTIR nanobiosensors for Escherichia coli detection,” Beilstein J. Nanotechnol., 3(1), pp. 485–492, 2012. (Journal)
[19] Y. Che, Y. Xu, R. Wang, and L. Chen, “Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography,” Anal. Bioanal. Chem., 409(20), pp. 4709–4718, 2017. (Journal)
Published
2023-06-25
How to Cite
Widyasari, D. A., Aulia, F., Andreani, A. S., Dewi, R. T., Septiani, N. L. W., Yuliarto, B., & Jenie, S. N. A. (2023). Synthesis of Silica Nanoparticle and Cd-Based Carboxyl Quantum Dots (SiNP@QDs) Conjugates as Biosensing Platform: A Pleriminary Study. ITB Graduate School Conference, 2(2), 144-152. Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/108
Section
Articles