Computational Study on the Effect of Anode Layer Variation on the Performance of FASnI3-based Perovskite Solar Cells
Keywords:
Lead-free perovskite solar cell, Metal back contact, SCAPS-1D simulation, DFT calculationsAbstract
The development of lead-free perovskite solar cells (PSC) is gaining
traction due to concerns over the toxicity of lead-based materials. This study
explores various anode materials as back contact of tin-based perovskites with a
complete configuration consisting of FTO/TiO2/FASnI3/PTAA/Anode to optimize
the performance of FASnI3-based PSC. Using SCAPS-1D and density functional
theory (DFT) simulations, we analyze the impact of varying work functions of
various metals, including several alloy metals, on the device's performance and
stability. The simulation results indicate that variations in the work function of
metal contacts ranging from 4.3 eV to 5.0 eV affect the Power Conversion
Efficiency (PCE) of the PSC. Utilizing DFT calculations enables the confirmation
of the accuracy of the work function parameter by computing the difference
between vacuum potential and Fermi energy, further validating the device’s
capability with PCE up to 17%. These results highlight the significance of
selecting suitable anode materials to improve both the efficiency and durability of
tin-based PSCs based on their layer configuration. Key properties of the anode
material, such as work function and electrical conductivity, can optimize the
charge extraction, enhancing overall device performance
Downloads
References
“Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL.” 6 October 2024. [Online]. https://www.nrel.gov/pv/cell-efficiency.html.
J. O. Obila, H. Lei, E. O. Ayieta, A. A. Ogacho, B. O. Aduda, & F. Wang, Optoelectronic property refinement of FASnI3 films for photovoltaic application, Materials Letters, 300, 1 October 2021, doi: 10.1016/j.matlet.2021.130099.
M. Dawson, C. Ribeiro, & M. R. Morelli, A Review of Three-Dimensional Tin Halide Perovskites as Solar Cell Materials, Universidade Federal de Sao Carlos, 12 January 2022, doi: 10.1590/1980-5373-MR-2021-0441.
R. Vidal, J. A. Alberola-Borràs, N. Sánchez-Pantoja, and I. Mora-Seró, Comparison of Perovskite Solar Cells with other Photovoltaics Technologies from the Point of View of Life Cycle Assessment, John Wiley and Sons Inc. 1 May 2021, doi: 10.1002/aesr.202000088.
Elizaveta E. Vaneeva, Victoria V. Ozerova, Sergey A. Tsarev, Mohamed M. Elnaggar, Nadezhda N. Dremova, Sergey L. Nikitenko, & Pavel A. Troshin, Low melting point metal alloys for cost-efficient deposition of electrodes in perovskite solar cells, Synthetic Metals, 293, 1 March 2023, doi: 10.1016/j.synthmet.2023.117301.
M. F. Don, P. Ekanayake, J. R. Jennings, H. Nakajima, U. Kumar D, and C. M. Lim, Influence of metal salts (Al, Ca, and Mg) on the work function and hole extraction at carbon counter electrodes in perovskite solar cells, Heliyon, 9 (7), 1 July 2023, doi: 10.1016/j.heliyon.2023.e17748.
R. S. Hall, D. Lamb, and S. J. C. Irvine, Back contacts materials used in thin film CdTe solar cells—A review, John Wiley and Sons Ltd. 9(5), 01 May 2021, doi: 10.1002/ese3.843.
Marand, Z.R., Kermanpur, A., Karimzadeh, F., Barea, E.M., Hassanabadi, E., Anaraki, E.H., Julián-López, B., Masi, S., & Mora-Seró, I. Structural and Electrical Investigation of Cobalt-Doped NiOx/Perovskite Interface for Efficient Inverted Solar Cells, Nanomaterials, 10(5), 1 May 2020, doi: 10.3390/NANO10050872.
J. H. Lee, Y. W. Noh, I. S. Jin, S. H. Park, & J. W. Jung, Efficient perovskite solar cells with negligible hysteresis achieved by sol-gel-driven spinel nickel cobalt oxide thin films as the hole transport layer, Journal of Materials Chemistry C, 7(24), pp. 7288–7298, 22 April 2019, doi: 10.1039/c9tc00902g.
N. M. Abdulmalek & H. A. Jawad, Influence of cobalt doping on structural and optical properties of copper oxide expected as an inorganic hole transport layer for perovskite solar cell, Journal of Materials Science: Materials in Electronics, 35(2), 1 January 2024, doi: 10.1007/s10854-024-11932-x.
Luo, Y., Chen, X., Zhang, C., Li, J., Shi, J., Sun, Z., Wang, Z., & Huang, S., AgAl alloy electrode for efficient perovskite solar cells, RSC Advances, 5(69), pp. 56037–56044, 23 June 2015, doi: 10.1039/C5RA06133D.
S. Han, F. Wu, W. Qin, H. Cao, L. Yang, and S. Yin, Perovskite solar cell based on double-layer Ag/SnBi alloy as cathode, Journal of Alloys and Compound, 888, 25 December 2021, doi: 10.1016/j.jallcom.2021.161455.
Almufarij, R. S., Ashfaq, A., Tahir, S., Alqurashi, R. S., Ragab, A. H., El-Refaey, D. E., Mushtaq, S., Shokralla, E. A., Ali, A., Capangpangan, R. Y., & Alguno, A. C., Improving performance and recombination losses in lead free formamidinium tin based perovskite solar cells, Materials Chemistry and Physics, 307, 1 October 2023, doi: 10.1016/j.matchemphys.2023.128150.
A. Hosen, M. S. Mian, & S. R. Al Ahmed, Improving the Performance of Lead-Free FASnI3-Based Perovskite Solar Cell with Nb2O5 as an Electron Transport Layer, Advanced Theory and Simulations, 6(2), p. 2200652, 1 February 2023, doi: 10.1002/adts.202200652.
S. Ravishankar, Z. Liu, U. Rau, & T. Kirchartz, Electronic Supplementary Information Multilayer Capacitances: How Selective Contacts Affect Capacitance Measurements of Perovskite Solar Cells., submitted for publication. (Pending Publication), 17 October 2024. [Online]. http://dx.doi.org/10.48550/arXiv.2106.05758
Ke, W., Stoumpos, C. C., Zhu, M., Mao, L., Spanopoulos, I., Liu, J., Kontsevoi, O. Y., Chen, M., Sarma, D., Zhang, Y., Wasielewski, M. R., & Kanatzidis, M. G., Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3, Science Advance, 3(8), p. e1701293, 30 August 2017, https://doi.org/10.1126/sciadv.1701293
S. Alireza Rasoli, S. Salmani, and S. Salmani, Simulation and investigation of perovskite solar cell based on FASnI3 absorber layer, 29 January 2023. Innovation and Research in Engineering Sciences. https://www.researchgate.net/publication/367525324
P. Hohenberg & W. Kohn, Inhomogeneous Electron Gas, 136. Physical Review, 1964, pp. B864-B871, https://doi.org/10.1103/PhysRev.136.B864
W. Kohn & L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, 140. Physical Review, 1965, pp. A1133-1138, https://doi.org/10.1103/PhysRev.140.A1133
G. Kresse & J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, 6 (1). Computational Material Science, 1996, pp. 15-50, https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse & J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, 54. Physical Review B: Condensed Matter Material Physics, 1996, pp. 11169-11186, https://doi.org/10.1103/PhysRevB.54.11169
P. E. Blöchl, Projector Augmented-Wave Method, 50. Physical Review B: Condensed Matter Material Physics, 1994, pp. 17953-17979, https://doi.org/10.1103/PhysRevB.50.17953
G. Kresse & D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, 59. Physical Review B: Condensed Matter Material Physics, 1999, pp. 1759-1775, https://doi.org/10.1103/PhysRevB.59.1758
J. P. Perdew, K. Burke, & M. Ernzerhof, Generalized Gradient Approximation Made Simple, 77. Physical Review Letters, 1996, pp. 3865-3868, https://doi.org/10.1103/PhysRevLett.77.3865
S. L. Dudarev, S. Y. Savrasov, C. J. Humphreys, & A. P. Sutton, Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study, 57. Physical Review B: Condensed Matter Material Physics, 1998, pp. 1505-1509, https://doi.org/10.1103/PhysRevB.57.1505
A. S. Rosen, J. M. Notestein, & R. Q. Snurr, Comparing GGA, GGA+U, and meta-GGA functionals for redox-dependent binding at open metal sites in metal-organic frameworks, Journal of Chemical Physics, 152, p. 40, 2020, doi: 10.1063/5.0010166.
H. J. Monkhorst & J. D. Pack, Special Points for Brillouin-Zone Integrations, 13. Physical Review B, 1976, pp. 5188-5192, https://doi.org/10.1103/PhysRevB.13.5188.
S. Grimme, J. Antony, S. Ehrlich, & H. A. Krieg, Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu, 132. Journal of Chemical Physics, 2010, p. 154104, https://doi.org/10.1063/1.3382344
D. Etor, M. Ekele, & I. A. Akintunde, Impact of Metal Work-Function on Current Rectification by Metal-Insulator-Metal Diodes, FUOYE Journal of Engineering and Technology, 7(4), 28 December 2022, doi: 10.46792/fuoyejet.v7i4.886.
“Computing the work function - VASP Wiki.” 13 October 2024. [Online]. https://www.vasp.at/wiki/index.php/Computing_the_work_function
G. J. Evans, ECE Applied to Energy from Space-Time: Amplification of the Radiative Correction by Spin Connection Resonance, Journal of Foundations of Physics and Chemistry, 1(5), 2008.
S. Liu, H. Lu, & D. Y. Li, The relationship between the electron work function and friction behavior of passive alloys under different conditions, Applied Surface Science, 351, pp. 316–319, 1 October 2015, doi: 10.1016/J.APSUSC.2015.05.125.
I. Brodie, S. H. Chou, & H. Yuan, A general phenomenological model for work function, Surface Science, 625, pp. 112–118, 3 March 2014, doi: 10.1016/J.SUSC.2014.03.002.
H. Kawano, Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces, Progress in Surface Science, 83(1–2), pp. 1–165, February 2008, doi: 10.1016/J.PROGSURF.2007.11.001.
Y. Luo, Y. Tang, L. Guo, & D. Y. Li, Microstructure – electron work function relationship: A crucial step towards ‘electronic metallurgy,’ Materials Today Community, 26, p. 101977, March 2021, doi: 10.1016/J.MTCOMM.2020.101977.
H. Lu, X. Huang, R. Hou, & D. Y. Li, Understanding the Effect of Ni on Mechanical and Wear Properties of Low-Carbon Steel from a View-Point of Electron Work Function, Metallurgical and Material Transactions A-Physical Metallurgy Materials Science, 49(7), pp. 2612–2621, July 2018, doi: 10.1007/S11661-018-4616-1.
H. B. Michaelson, The work function of the elements and its periodicity, Journal of Applied Physics, 48(11), pp. 4729–4733, November 1977, doi: 10.1063/1.323539.
Jiang, Z., Chen, X., Lin, X., Jia, X., Wang, J., Pan, L., Huang, S., Zhu, F., & Sun, Z., Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode, Solar Energy Materials and Solar Cells, 146, pp. 35–43, March 2016, doi: 10.1016/j.solmat.2015.11.026.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 ITB Graduate School Conference

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
