DFT Studies of NH3 Adsorption on Graphene-Supported NixMy (M=Pt and Rh; x=2–6; y=0–4)
Keywords:
Density Functional Theory, Ammonia Adsorption, Nickel Cluster, CatalysisAbstract
This study investigates the adsorption of ammonia (NH₃) on bimetallic NixMy-G (M = Pt, Rh; x = 2-6, y = 0-4) clusters supported on graphene using Density Functional Theory (DFT) calculations. The primary goal is to understand the structural stability and adsorption characteristics of these bimetallic clusters as potential catalysts for NH₃ decomposition, which plays a crucial role in hydrogen production. The results show that the substitution of nickel (Ni) atoms with platinum (Pt) or rhodium (Rh) improves the structural stability of the catalyst clusters, with Rh-based clusters showing greater stability than Pt-based ones. Furthermore, NH₃ adsorption tends to occur predominantly on Pt atoms in the NixPty clusters and on Ni atoms in the NixRhy clusters. The strongest adsorption is observed in Ni4Pt2-G, indicating its high potential as a catalyst. Overall, the incorporation of Pt and Rh into Ni clusters enhances both stability and adsorption properties, positioning these bimetallic systems as promising candidates for further exploration in catalytic ammonia decomposition.
Downloads
References
R. Lan, J. T. S. Irvine, and S. Tao., Ammonia and related chemicals as potential indirect hydrogen storage materials, International Jurnal of Hydrogen Energy, 37(2), pp. 1482-1494, Jan. 2012, doi: 10.1016/j.ijhydene.2011.10.004.
M. Aziz, T. Oda, and T. Kashiwagi., Comparison of liquid hydrogen, methylcyclohexane and ammonia on energy efficiency and economy, Energy Procedia., pp. 4086-4092, 2019, doi: 0.1016/j.egypro.2019.01.827.
Xuezhi Duan, Ji Jian, Qian Gang, Fan Chen, Zhu Yian, Xinggui Zhoua, De Chen, & Weikang Yuana, Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and Ni(1 1 1) surfaces: A density functional theory study, Journal of Molecular Catalysis A: Chemical, 357, pp. 81–86, May. 2012, doi: 10.1016/j.molcata.2012.01.023.
D. A. Hansgen, D. G. Vlachos, and J. G. Chen, Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction, Nature Chemistry, 2(6), pp. 484–489, Jun. 2010, doi: 10.1038/nchem.626.
J. Łuczak and M. Lieder, Nickel-based catalysts for electrolytic decomposition of ammonia towards hydrogen production, Advances in Colloid and Interface Science, 319(102993), Sep. 2023, doi: 10.1016/j.cis.2023.102963.
X. HAN, W. CHU, P. NI, S. LUO, and T. ZHANG, Promoting effects of iridium on nickel based catalyst in ammonia decomposition, Journal of Fuel Chemistry and Technology, 35(6), pp. 691–695, Dec. 2007, doi: 10.1016/S1872-5813(08)60004-3.
M. Miao, M. Sha, C. Cao, S. Lei, and Q. Meng, Theoretical study on Fe-M (M = Mo, Ni, Pt) bimetallic catalysts to promote ammonia decomposition, Chemical Physics Letters, 808(140134), Dec. 2022, doi: 10.1016/j.cplett.2022.140134.
H. Fang, Liu Dan, Luo Yu, Zhou Yanliang, Wang Xiuyun, Lin Bingyu, & Jiang Lilong, Challenges and Opportunities of Ru-Based Catalysts toward the Synthesis and Utilization of Ammonia, American Chemical Society, 12(7), pp. 3938-3954, Apr. 2022, doi: 10.1021/acscatal.2c00090.
Tianxu Su, Bin Guan, et al., Review on Ru-Based and Ni-Based Catalysts for Ammonia Decomposition: Research Status, Reaction Mechanism, and Perspectives, Energy and Fuels, 37(12), pp. 8099-8127, Jun. 2023, doi: 10.1021/acs.energyfuels.3c00804.
S. Zhou, S. Lin, and H. Guo, First-Principles Insights into Ammonia Decomposition Catalyzed by Ru Clusters Anchored on Carbon Nanotubes: Size Dependence and Interfacial Effects, Journal of Physical Chemistry C, 122(16), pp. 9091–9100, Apr. 2018, doi: 10.1021/acs.jpcc.8b01965.
W. Guo and D. G. Vlachos, Patched bimetallic surfaces are active catalysts for ammonia decomposition, Nature Communications, 6(8619), Oct. 2015, doi: 10.1038/ncomms9619.
M. Miao, X. Gong, S. Lei, L. Wang, M. Sha, and Q. Meng, The graphene-supported non-noble metal catalysts activate ammonia decomposition: A DFT study, Chemical Physics, 548(111249), Aug. 2021, doi: 10.1016/j.chemphys.2021.111249.
P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, 136(3B), pp. B864–B871, Nov. 1964, doi: 10.1103/PhysRev.136.B864.
W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, 140 (4A), pp. A1133–A1138, Nov. 1965, doi: 10.1103/PhysRev.140.A1133.
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, 6(1), pp. 15–50, Jul. 1996, doi: 10.1016/0927-0256(96)00008-0.
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B, 54(16), pp. 11169–11186, Oct. 1996, doi: 10.1103/PhysRevB.54.11169.
P. E. Blöchl, Projector augmented-wave method, Physical Review B, 50(24), pp. 17953–17979, Dec. 1994, doi: 10.1103/PhysRevB.50.17953.
G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, 59(3), pp. 1758–1775, Jan. 1999, doi: 10.1103/PhysRevB.59.1758.
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, 77(18), pp. 3865–3868, Oct. 1996, doi: 10.1103/PhysRevLett.77.3865.
H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, 13(12), pp. 5188–5192, Jun. 1976, doi: 10.1103/PhysRevB.13.5188.
S. Grimme, Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction, Journal of Computational Chemistry, 27(15), pp. 1787–1799, Nov. 2006, doi: 10.1002/jcc.20495.
K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography, 44(6), pp. 1272–1276, Dec. 2011, doi: 10.1107/S0021889811038970.
D. S. Sholl and J. A. Steckel, Density functional theory: a practical introduction. John Wiley & Sons, 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 ITB Graduate School Conference

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
