A Note on Stefan Wave Problem
Keywords:
finite difference, perturbation solution, Stefan problem, wave equationAbstract
In this paper, the so-called Stefan problem for wave equation is studied. A smooth obstacle placed at one end of a vibrating string causes the effective length of the vibrating string to be changing over time. A straightforward perturbation expansion is used to solve the problem analytically. Some remarks regarding studies of a similar problem by others in the literature are given. Furthermore, we implement numerical method to solve the problem and analyzes the result comprehensively.
Downloads
Download data is not yet available.
References
N. L. Balazs, On the solution of the wave equation with moving boundaries, J. Math. Anal. Appl., 3(3), pp. 472–484, 1961, doi: 10.1016/0022-247X(61)90071-3.
C. Issanchou, J. L. Le Carrou, S. Bilbao, C. Touzé, & O. Doaré, A modal approach to the numerical simulation of a string vibrating against an obstacle: Applications to sound synthesis, DAFx 2016 - Proc. 19th Int. Conf. Digit. Audio Eff., 2, pp. 167–174, 2016.
D. Kartofelev, Kinematics of ideal string vibration against a rigid obstacle,DAFx 2017 - Proc. 20th Int. Conf. Digit. Audio Eff., 1, pp. 40–47, 2017.
B. Pelloni & D. A. Pinotsis, Moving boundary value problems for the wave equation, J. Comput. Appl. Math., 234(6), pp. 1685–1691, 2010, doi: 10.1016/j.cam.2009.08.016.
S. Bilbao, Numerical Modeling of String / Barrier Collisions, Isma2014, no. June, 2014.
C. Issanchou, V. Acary, F. Pérignon, C. Touzé, & J.-L. Le Carrou, Nonsmooth contact dynamics for the numerical simulation of collisions in musical string instruments, J. Acoust. Soc. Am., 143(5), pp. 3195–3205, 2018, doi: 10.1121/1.5039740.
C. P. Vyasarayani, S. Birkett, & J. McPhee, Modeling the dynamics of a vibrating string with a finite distributed unilateral constraint: Application to the sitar, J. Acoust. Soc. Am., 125(6), pp. 3673–3682, 2009, doi: 10.1121/1.3123403.
A. K. Mandal & P. Wahi, Natural frequencies, modeshapes and modal interactions for strings vibrating against an obstacle: Relevance to Sitar and Veena, J. Sound Vib., 338, pp. 42–59, 2015, doi: 10.1016/j.jsv.2014.06.010.
A. K. Mandal & P. Wahi, Mode-locking and improved harmonicity for real strings vibrating in the presence of a curved obstacle, Nonlinear Dyn., 88(3), pp. 2203–2224, 2017, doi: 10.1007/s11071-017-3371-y.
H. Singh & P. Wahi, Role of curvatures in determining the characteristics of a string vibrating against a doubly curved obstacle, J. Sound Vib., 402, pp. 1–13, 2017, doi: 10.1016/j.jsv.2017.04.043.
H. Singh, A. K. Mandal, & P. Wahi, Non-planar motions of a string vibrating against a smooth unilateral obstacle, MATEC Web Conf., 83, pp. 0–3, 2016, doi: 10.1051/matecconf/20168301010
C. Issanchou, J. L. Le Carrou, S. Bilbao, C. Touzé, & O. Doaré, A modal approach to the numerical simulation of a string vibrating against an obstacle: Applications to sound synthesis, DAFx 2016 - Proc. 19th Int. Conf. Digit. Audio Eff., 2, pp. 167–174, 2016.
D. Kartofelev, Kinematics of ideal string vibration against a rigid obstacle,DAFx 2017 - Proc. 20th Int. Conf. Digit. Audio Eff., 1, pp. 40–47, 2017.
B. Pelloni & D. A. Pinotsis, Moving boundary value problems for the wave equation, J. Comput. Appl. Math., 234(6), pp. 1685–1691, 2010, doi: 10.1016/j.cam.2009.08.016.
S. Bilbao, Numerical Modeling of String / Barrier Collisions, Isma2014, no. June, 2014.
C. Issanchou, V. Acary, F. Pérignon, C. Touzé, & J.-L. Le Carrou, Nonsmooth contact dynamics for the numerical simulation of collisions in musical string instruments, J. Acoust. Soc. Am., 143(5), pp. 3195–3205, 2018, doi: 10.1121/1.5039740.
C. P. Vyasarayani, S. Birkett, & J. McPhee, Modeling the dynamics of a vibrating string with a finite distributed unilateral constraint: Application to the sitar, J. Acoust. Soc. Am., 125(6), pp. 3673–3682, 2009, doi: 10.1121/1.3123403.
A. K. Mandal & P. Wahi, Natural frequencies, modeshapes and modal interactions for strings vibrating against an obstacle: Relevance to Sitar and Veena, J. Sound Vib., 338, pp. 42–59, 2015, doi: 10.1016/j.jsv.2014.06.010.
A. K. Mandal & P. Wahi, Mode-locking and improved harmonicity for real strings vibrating in the presence of a curved obstacle, Nonlinear Dyn., 88(3), pp. 2203–2224, 2017, doi: 10.1007/s11071-017-3371-y.
H. Singh & P. Wahi, Role of curvatures in determining the characteristics of a string vibrating against a doubly curved obstacle, J. Sound Vib., 402, pp. 1–13, 2017, doi: 10.1016/j.jsv.2017.04.043.
H. Singh, A. K. Mandal, & P. Wahi, Non-planar motions of a string vibrating against a smooth unilateral obstacle, MATEC Web Conf., 83, pp. 0–3, 2016, doi: 10.1051/matecconf/20168301010
Downloads
Published
2022-10-12
How to Cite
Ihsan, A. F., & Tuwankotta, J. M. (2022). A Note on Stefan Wave Problem. ITB Graduate School Conference, 1(1), 197–207. Retrieved from https://gcs.itb.ac.id/proceeding-igsc/index.php/igsc/article/view/19
Issue
Section
Articles