
Proceedings of the 2nd ITB Graduate School Conference 

Strengthening Multidisciplinary Research to Enhance its 

Impact on Society 

July 21, 2022 

ISSN: 2963-718X 

 

Copyright © 2022 Published by ITB, ISSN: 2963-718X  281 

Numerical Simulation of T w o - d i m e n s i o n a l  

Vortex-Induced Vibration       of Circular Cylinder Using 

Least Square Moving Particle Semi-Implicit Method – 

Vortex Particle Method (LSMPS-VPM) 

 Al-Faisal Firdaus* & Lavi Rizki Zuhal  

Faculty of mechanical and Aerospace Engineering, Bandung Institute of Technology 
*Email: icalfirdaus12@gmail.com 

 

 

Abstract. Interaction between fluid and structure is a complex problem that is 

often encountered in various engineering fields. One of the fluid-structure 

interaction (FSI) phenomena is vortex-induced vibration (VIV). In this research, a 

particle-based numerical method known as the Least square moving particle semi-

implicit – Vortex particle method (LSMPS-VPM) was improved to be able to 

simulate the VIV of a solid rigid object. LSMPS-VPM utilized multi-resolution 

particles, LSMPS spatial operator, and the Brinkmann penalization method for 

directly solving Navier-Stokes equations in vorticity form. The LSMPS-VPM was 

improved by adding a VIV solver which employed the 4𝑡ℎ order Runge-Kutta 

method to solve the one-degree-of-freedom vibration equation. The numerical 

method was tested with two benchmark problems: the flow past a static two-

dimensional circular cylinder and the VIV of a two-dimensional circular cylinder. 

The results of the static simulation show that the present method is already capable 

of producing results that agree with past simulations. On the other hand, from the 

results of the VIV simulation, the present method is capable of predicting the 

motion of the solid body immersed in the fluid, however, some parameters still 

show inaccurate results compared with the references. 

Keywords: particle-based simulation; least square moving particle semi-implicit; 

vortex-induced vibration. 

1 Introduction 

Vortex-induced vibration (VIV) of a structure is one of the practical interests of 

many engineering fields. VIV is classified as a complex fluid-structure 

interaction (FSI) case where the vibration is induced by the generation of vortex 

shedding from the structure. VIV phenomenon can cause damage and sometimes 

can lead to structural failures. Hence, a comprehensive understanding of VIV is 

very important in designing and improving a structure’s strength. 

VIV phenomenon has been studied intensively in the past two decades. 

Comprehensive reviews of the fundamentals of VIV can be found in many 
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publications such as Sarpkaya [1] and Williamson [2]. Recently, various 

numerical simulations have been widely used to contribute to studying the nature 

of VIV and FSI in general. Most of the numerical simulations that are used in 

studying the VIV phenomenon are based on the grid-based method. Shen et al. 

[3] utilized the SIMPLEC algorithm coupled with immersed boundary method to 

simulate case studies for a static and a one-degree-of-freedom (1DOF) circular 

cylinder immersed in a fluid. Zhao et al. [4] investigated the VIV of a circular 

cylinder in oscillatory flow using Petrov-Galerkin finite element method. Pan et 

al. [5] utilized Reynolds averaged Navier-Stokes simulation code to simulate the 

VIV of a circular cylinder at a low mass-damping configuration. Pastrana et al. 

[6] simulated a VIV of a low-mass ratio two-degree-of-freedom circular cylinder 

at subcritical Reynolds numbers using Large-eddy simulation. 

Although the use of the grid-based method is more prevalent in VIV simulation, 

the method may encounter difficulties when dealing with problems involving 

large deformation or complex body shapes [7]. To overcome the difficulties, a 

particle-based method can be utilized. The particle-based method provides 

advantages for complex domain simulation or high deformation simulation due 

to the usage of freely moving particles inside the simulation domain.  

In this research, a particle-based simulation program for a simulation of VIV will 

be developed. The Least square moving particle semi-implicit – Vortex particle 

method (LSMPS-VPM) developed by Pristiansyah [8] will be used as the base 

program for this research. The LSMPS-VPM utilizes Least square moving 

particle semi-implicit (LSMPS) spatial operators [9] and the fast multipole 

method (FMM) [10], allowing multi-resolution particles and faster computational 

time compared with the classical VPM [11]. The present numerical method will 

be validated using benchmark test cases that have been done in the past research: 

simulation of a flow past static and 1DOF circular cylinder at Reynolds number 

100.  The remainder of this report is organized as follows: the present numerical 

method is explained in Section 2, the simulation details are presented in Section 

3, and the results are discussed in Section 4, followed by the conclusions in 

Section 5.   

2 Numerical Methods 

2.1 Vortex Particle Method  

The continuity and momentum equations for a viscous incompressible fluid are 

expressed as 

 ∇ ⋅ 𝒖 = 0 (1) 
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𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅ ∇)𝒖 = −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 (2) 

where 𝑝 is the pressure, 𝒖 is the velocity vector, 𝜈 is the kinematic viscosity, and 

𝜌 is the fluid density. The vorticity form of Eq. (2), can be obtained by taking the 

curl operation on both sides of Eq. (2) 

 
𝜕𝝎

𝜕𝑡
+ (𝒖 ⋅ ∇)𝝎 = (𝝎 ⋅ ∇)𝒖 + 𝜈∇2𝝎 (3) 

where 𝝎 is the vorticity defined by the curl of the velocity  

 𝝎 = ∇ × 𝒖 (4) 

For two-dimensional simulation in a Cartesian coordinate plane, 𝒖 = (𝑢, 𝑣) and  

𝝎 = 𝜔𝑧𝑘̂, the stretching term (𝝎 ⋅ ∇)𝒖 in the right-hand side of Eq. (3) 

disappears. Therefore, the momentum equation can be rewritten into  

 
𝜕𝝎

𝜕𝑡
+ (𝒖 ⋅ ∇)𝝎 =

𝐷𝝎

𝐷𝑡
= 𝜈∇2𝝎 (5) 

where 
𝐷

𝐷𝑡
 is the material derivative. In the Vortex particle method (VPM), 

particles carrying vorticity are used to discretize the fluid. The discretized particle 

can be written mathematically as follows: 

 𝜔𝑖 = Γ𝑖𝑉𝑖 (6) 

where Γ𝑖 and 𝑉𝑖 are the vorticity strength and the volume of the corresponding ith 

particle. To obtain the solution of Eq. (5), the viscous splitting algorithm [12] is 

utilized. The algorithm includes two steps: convection and diffusion steps. These 

steps are described mathematically as follows: 

 
𝑑𝒙

𝑑𝑡
= 𝒖(𝒙, 𝑡) (7) 

 
𝑑𝝎

𝑑𝑡
= 𝜈∇2𝝎(𝒙, 𝑡) (8) 

where 𝒙 is the particle position vector. The Forward time-stepping scheme is used 

as the time integration method for Eq. (7) and (8). The stability condition of the 

scheme will be following the condition used by Ploumhans and Winckelmans 

[13].  

To solve Eq. (7) and (8), the value of velocity field 𝒖 must be known. The velocity 

field is obtained by solving the Poisson equation constructed from the continuity 

equation (Eq. (1)) and the vorticity definition (Eq. (4)) 

 𝛻2𝒖 = −𝛻 × 𝝎 (9) 
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One of the approaches to solve Eq. (9) and obtained the velocity field is to utilize 

the Green’s function method [14]. Using this approach, the velocity field can be 

divided into several contributions, namely, irrotational velocity 𝒖∞, and 

rotational velocity 𝒖𝜔.  

 𝒖 = 𝒖∞ + 𝒖𝜔  (10) 

For two-dimensional flow simulation, 𝒖∞ is the summation of the uniform flow 

velocity 𝑈∞ and the solid body velocity 𝒖𝑠. On the other hand, 𝒖𝜔 can be 

calculated as the sum of vorticities of the vortex elements, 

 𝒖𝜔 = −
1

2𝜋
∑

(𝑥−𝑥𝑖)

|𝑥−𝑥𝑖|2
𝑁
𝑖=0 × Γ𝑖𝑒𝑧   (11) 

where 𝑒𝑧 is the unit vector in the 𝑧-direction of a Cartesian coordinate system. 

The most common way to effectively compute Eq. (11) is by using the Fast 

multipole method (FMM) introduced by Greengard and Rokhlin in [15]. The 

detail of the FMM algorithm can be referred to in more detail in [15] and [10]. In 

this research, a well-developed FMM program is utilized to drastically reduce the 

computational time.  

2.2 Least Squares Moving Particle Semi-Implicit Spatial 

Operators 

Least squares moving particle semi-implicit (LSMPS) method is a meshfree 

Langrangian approach for numerical analysis of incompressible flow that was 

developed by Tamai and Koshizuka [9]. The LSMPS method utilizes a weighted 

least square function to reduce errors that surface in the Moving particle semi-

implicit method. There are two types of LSMPS spatial operators: LSMPS type 

A and type B. The main difference between type A and B is that LSMPS type B 

can be used to calculate operators at an arbitrary position. 

In this research, the spatial derivatives calculation of LSMPS is used to replace 

the discretization-correction method (DC-PSE) that was commonly used in the 

VPM. By using LSMPS spatial operators, multi-resolution simulation can be 

done easily without the need for additional modeling [16]. The LSMPS spatial 

operators are also used in the remeshing process of the VPM, replacing the 

previous redistribution technique due to the LSMPS capability in interpolating 

field values. The formula of LSMPS spatial operators is as follows: 

 𝐷𝑥𝑓
ℎ(𝑥𝑖) = 𝑯𝑖𝑴𝑖

−1𝒃𝑖

 (12)  



 NS. of 2D VIV of Circular Cylinder Using LSMPS-VPM 285 

 

 

where 𝐷𝑥 is a differential operator, 𝑯𝑟𝑠 is matrix coefficient, 𝑴𝑖 is a moment 

matrix, and  𝒃𝑖 is a moment vector. For a two-dimensional case, the second-order 

formulation of LSMPS type A for a particle with diameter 𝐿𝑖 are as follows: 

 𝐷𝑥 = [
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕2

𝜕2𝑥

𝜕

𝜕𝑥𝜕𝑦

𝜕2

𝜕2𝑦
]
𝑇

 (13)  

 𝑯𝑖 =

[
 
 
 
 
 
𝐿𝑖
−1 0 0 0 0

0 𝐿𝑖
−1 0 0 0

0 0 2𝐿𝑖
−2 0 0

0 0 0 𝐿𝑖
−1 0

0 0 0 0 2𝐿𝑖
−2]

 
 
 
 
 

 (14)  

 𝑴𝑖 = ∑ [𝑤(‖𝑥𝑗 − 𝑥𝑖‖)𝑷 (
𝑥𝑗−𝑥𝑖

𝑟𝑠
)𝑷𝑇 (

𝑥𝑗−𝑥𝑖

𝑟𝑠
)  ]𝑗∈Λ𝑖

 (15)  

 𝒃𝑖 = ∑ [𝑤(‖𝑥𝑗 − 𝑥𝑖‖)𝑷 (
𝑥𝑗−𝑥𝑖

𝑟𝑠
) {𝑓(𝑥𝑗) − 𝑓(𝑥𝑖)}]𝑗∈Λ𝑖

 (16)  

 𝑷 = [𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2]𝑇 (17) 

 𝑤(𝑥, 𝑟𝑒𝑓𝑓) = {
1 −

‖x‖

𝑟𝑒𝑓𝑓
        , 0 ≤ ‖𝑥‖ < 𝑟𝑒𝑓𝑓

0                   , ‖𝑥‖ ≥ 𝑟𝑒𝑓𝑓 
 (18) 

where 𝑟𝑒𝑓𝑓 is the mean support radius of the particle, 𝑟𝑠 is the residual size of the 

particle, Λ𝑖 is a set that contains the ith particle neighbors, and 𝑤 is the weight 

function. The support radius of a particle can be calculated using Koshizuka and 

Tamai formulation suggested in [16]. 

 𝑟𝑒𝑓𝑓 = 3.5𝐿𝑖

 (19)  

On the other hand, the LSMPS type B formulation can be found by changing Eq. 

(13), (14), (16), and (17) into the followings:  

 𝐷𝑥 = [1
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕2

𝜕2𝑥

𝜕

𝜕𝑥𝜕𝑦

𝜕2

𝜕2𝑦
]
𝑇

 (20)  
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 𝑯𝑖 =

[
 
 
 
 
 
 
1 0 0 0 0 0
0 𝑙𝑖

−1 0 0 0 0

0 0 𝑙𝑖
−1 0 0 0

0 0 0 2𝑙𝑖
−2 0 0

0 0 0 0 𝑙𝑖
−1 0

0 0 0 0 0 2𝑙𝑖
−2]

 
 
 
 
 
 

 (21) 

 𝒃𝑖 = ∑ [𝑤(‖𝑥𝑗 − 𝑥𝑖‖)𝑷 (
𝑥𝑗−𝑥𝑖

𝑟𝑠
) {𝑓(𝑥𝑗)}]𝑗∈Λ𝑖

 (22)  

 𝑷 = [1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2]𝑇

 (23)  

where 𝑙𝑖 is the average particle diameter around the position 𝑥. In a multi-

resolution particle simulation, the mean support radius of ith particle 𝑟𝑖 could be 

different with its neighboring particles 𝑟𝑗 . This could make a one-way interaction 

between particles [16]. Therefore, the support domain radius of multi-resolution 

𝑟𝑖𝑗  must be calculated by considering the size of neighboring particles 

surrounding the ith particle, 

 𝑟𝑖𝑗 =
𝑟𝑖+𝑟𝑗

2
  (24) 

With the implementation of LSMPS operators in the VPM, the numerical method 

will be further referenced as LSMPS-VPM.  

2.3 Brinkmann Penalization Method 

To provide the no-slip condition for the solid boundary in the simulation, 

LSMPS-VPM utilized the Brinkmann penalization method. The Brinkmann 

penalization method works by adding the penalization term into Eq. (5). This 

addition will penalize the difference between the solid and fluid to be as close as 

zero. The penalized momentum equation is as follows: 

 
𝐷𝝎

𝐷𝑡
= 𝜈∇2𝝎 + ∇ × (𝜆𝜒(𝒖𝑠 − 𝒖))

 (25)  

where 𝜆 is the porosity of the solid, 𝜒 is the characteristics function that defines 

the region of penalization, and 𝒖𝑠 is the solid body velocity. The values of 𝜒 is 

following a mask function introduced by Gazzola et al. [17], 
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 𝜒 = {

0                              , 𝑟𝑛 < 𝑟𝑒
1

2
(1 +

𝑟𝑛

𝑟𝑒
+

1

𝜋
sin (𝜋

𝑟𝑛

𝑟𝑒
) )         , −𝑟𝑒 ≤ 𝑟𝑛 ≤ 𝑟𝑒           

1                             , 𝑟𝑛 > 𝑟𝑒
 (26)  

where 𝑟𝑛 is the normal particle distance to the nearest discrete solid body particles 

and 𝑟𝑒 is the affected region distance. The 𝑟𝑒 length used in the two-dimensional 

case is 𝑟𝑒 = 2√2𝜎, where 𝜎 is the smallest particle size used in the simulation. In 

the LSMPS-VPM, the penalization process will be evaluated semi-implicitly 

using a split-step algorithm similar to the advection and diffusion process. 

 𝒖𝑝𝑒𝑛 =
𝒖+𝜆Δ𝑡𝜒𝒖𝑠 

1+𝜆Δ𝑡𝜒

 (27)  

 𝝎𝑝𝑒𝑛 = ∇ × 𝒖𝑝𝑒𝑛 (28) 

where 𝒖𝑝𝑒𝑛 is the penalized velocity, 𝝎𝑝𝑒𝑛 is the penalized vorticity, and Δ𝑡 is 

the time increment. For the calculation of the curl of 𝒖𝑝𝑒𝑛, LSMPS spatial 

operators will be used. 

2.4 Aerodynamic Forces Calculation 

The aerodynamics forces computed from the LSMPS-VPM utilized the 

penalization force due to the implemented Brinkmann penalization. The 

penalization force calculation method is expressed as 

 𝐹 = 𝜌 ∫ 𝜆𝜒(𝑢 − 𝑢𝑠)𝑑𝑆
Ω

 (29)  

where 𝑆 is the area of the penalized domain. The lift (𝐶𝑙) and drag (𝐶𝑑) 

coefficients can be calculated by using the following equations, 

 𝐶𝑙 =
𝐹⋅𝑒𝑦

1

2
𝜌𝑈∞ 

2 𝐷
 (30) 

 𝐶𝑑 =
𝐹⋅𝑒𝑥

1

2
𝜌𝑈∞ 

2 𝐷
 (31) 

where 𝑒𝑥  and 𝑒𝑦 are the unit vector in 𝑥 and 𝑦 direction of the Cartesian 

coordinate, and 𝐷 is the reference length of the simulated object.  
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2.5 Vortex-Induced Vibration 

The VIV simulation in this research will be considering the case of a structure 

that is attached to a spring and damper. The vibration of a structure in the traverse 

𝑦 direction in a Cartesian coordinate is governed by an ordinary differential 

equation as follows: 

 𝑀𝑦̈ + 𝐶𝑦̇ + 𝐾𝑦 = 𝐹𝑦

 (32)  

where 𝑀 is the mass of the structure, 𝐶 is the damping constant, 𝐾 is the spring 

constant, and 𝐹𝑦 is the fluid force felt by the structure in the 𝑦-direction. The non-

dimensional form of Eq. (31) is often used to perform numerical simulation 

because it provides a more valid definition for a certain occurring limitation. 

 𝑀∗𝑦̈∗ + 𝐶∗𝑦̇∗ + 𝐾∗𝑦∗ = 𝐹𝑦
∗ (33) 

where 𝑀∗ is the non-dimensional mass, 𝐶∗ is the non-dimensional damping 

constant, 𝐾∗ is the non-dimensional spring constant, and 𝑦∗ is the non-

dimensional traverse y-direction. To solve Eq. (32), the 4𝑡ℎ order Runge-Kutta 

method will be utilized. 

2.6 Numerical Procedure 

To provide a clearer picture of the developed program calculation procedures, 

assuming the particle vorticity, the uniform flow velocity, and the solid body 

velocity values at time 𝑡 are known, the values at 𝑡 + Δ𝑡 can be computed as 

follows:  

• Compute 𝒖𝜔 using Eq.  (11), then compute 𝒖 using Eq. (10). 

• Penalize the obtained velocity field using Eq. (27). 

• Correct the particle vorticity using Eq. (28) with the help of LSMPS 

spatial operators. 

• Compute the forces exerted on the simulation object using Eq. (29) 

• Do the advection step by integrating Eq. (7) and update the particle 

location 

• Do the diffusion step by integrating Eq. (8) and update the vorticity 

value for each particle. 

• Compute the effect of the force on the vibration of the object by solving 

Eq. (33) and update the solid object’s location and velocity for the next 

time step. 

• Remesh the particles back to their initial location and repeat the 

calculation for the next time step.  
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3 Problem Descriptions 

The developed program is first evaluated using a simulation case of a flow around 

a static circular cylinder at Reynolds number (𝑅𝑒 =
𝑢∞𝐷

𝑣
) 100. The uniform flow 

velocity is set to be 𝑈∞ = 1. The simulation domain is discretized by using a 

uniform multi-resolution particle arrangement, with the smallest particle size 𝜎. 

The fluid density 𝜌 will also be set to 1.  

 

Figure 1 Example of multi-resolution particle distribution in LSMPS-VPM. 

Particle distribution is denser near the simulation object. The size of the smaller 

particles represented in orange is 𝜎. On the other hand, the size of the bigger 

particles represented in blue is 4𝜎 

Next, the VIV simulation of a circular cylinder will be conducted at the same 𝑅𝑒. 

The particle size from the previous simulation which produced the most accurate 

results compared with the references will be used in the VIV simulation. The 

example of the particle distribution is shown in Figure 1. 

In all of the simulation cases, a computational domain [−7.5𝐷, 30𝐷] ×
[−7.5𝐷, 7,5𝐷] will be used. The value of 𝐷 refers to the diameter of the circular 

cylinder. The center of the cylinder will be placed at (0,0) for both simulation 

cases. The non-dimensional time is expressed as 𝑇 =
𝑈∞𝑡

𝐷
. To fulfill the stability 

condition, a non-dimensional time increment of Δ𝑇 = 0.007 is selected for all 

the simulations. The simulations will be set to run for  𝑇 = 120. The schematics 

of the simulation can be seen in Figure 2. 
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Figure 2 Schematics of the computational domain of flow past a circular 

cylinder.  

4 Results and Discussions 

4.1 Flow Around a Circular Cylinder 

The present numerical simulation accuracy is investigated in this section using 

particle size convergence test. The test is carried out by using 3 different values 

of 𝜎, mainly 0.05, 0.025, and 0.02. In the convergence test, the maximum lift 

coefficients 𝐶𝑙𝑚𝑎𝑥, mean lift coefficient 𝐶̅𝑙, mean drag coefficient 𝐶̅𝑑, and the 

Strouhal number 𝑆𝑡 are the main parameters that will be analyze. The mean value 

of the variables is obtained at the fluctuation region of the simulation where the 

vortex shedding behind the cylinder is already in stable condition. The results of 

the simulations are shown in Table 1. From the results, it can be seen that the 

coefficients are getting closer to a certain number with the smaller value of 𝜎. 

Therefore, the results of 𝜎 = 0.02 will be used as the LSMPS-VPM 

representative for comparison with other references.  

 

Table 1 The results of particle size convergence test of LSMPS-VPM for flow 

around a static circular cylinder  

No 𝜎 𝐶𝑙𝑚𝑎𝑥 𝐶̅𝑙 𝐶̅𝑑 𝑆𝑡 

1 0.05 0.531 0.335 1.554 0.149 
2 0.025 0.408 0.253 1.398 0.158 

3 0.02 0.382 0.233 1.363 0.158 

 

Table 2 shows the comparison of LSMPS-VPM with other references. From the 

comparison, it can be seen that the 𝐶̅𝑑 result of the present LSMPS-VPM is in 

good agreement with Shen et al. [3], and Nguyen et al. [18]. The 𝑆𝑡 result of 

LSMPS-VPM is close to Nguyen et al. [18]. On the other hand, the 𝐶𝑙𝑚𝑎𝑥  result 

of LSMPS-VPM shows a bigger result compared with the other references. 

However, the difference is not that high, with the highest being only 19.3% 

higher compared with Mimeau et al. [19]. With these results, it can be concluded 
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that the LSMPS-VPM can predict the 𝐶𝑑 value well for a flow around a circular 

cylinder. LSMPS-VPM can also predict 𝐶𝑙 and 𝑆𝑡 values, but with a lower 

accuracy than the prediction of 𝐶𝑑. 

Table 2 Maximum lift (𝐶𝑙𝑚𝑎𝑥), mean lift (𝐶̅𝑙), mean drag (𝐶̅𝑑) coefficients 

and Strouhal number (𝑆𝑡) of a static circular cylinder immersed in the 

flow at 𝑅𝑒 = 100 

𝐴𝑢𝑡ℎ𝑜𝑟𝑠 𝐶𝑙𝑚𝑎𝑥 𝐶̅𝑙 𝐶̅𝑑 𝑆𝑡 

Present authors 0.382 0.233 1.363 0.158 

Shiels et al. [20] − 0.30 1.33 0.167 

Shen et al. [3] 0.364 − 1.376 0.166 

Mimeau et al. [19] 0.32 − 1.4 0.165 

Yan et al. [21] 0.34 − 1.387 0.166 

Nguyen et al. [18] 0.34 − 1.36 0.16 

 

 

 
(a) (b) 

Figure 3 (a) Instantaneous vorticity distribution of the flow around a circular 

cylinder at 𝑅𝑒 = 100. Colorbar for the distribution is plotted in the range -1 to 1. 

(b) Time history of lift and drag coefficients (𝐶𝑙 and 𝐶𝑑).  

Figure 3, shows the vorticity contours and the time history of 𝐶𝑙 and 𝐶𝑑 of the 

circular cylinder simulation. It is observed that the flow pattern behind the 

cylinder is resembling the Karman vortex street pattern. The fluctuations of the 

lift and drag coefficients are because there is a generation of vortex shedding 

behind the circular cylinder. From Figure 3(b), it can be seen that the vortex 

behind the cylinder is starting to shed at around 𝑇 = 40. 

4.2 Vortex-Induced Vibration of a Circular Cylinder.  

In the VIV simulation, an elastically mounted rigid circular cylinder is 

constrained to move traversely to a uniform free-stream velocity. To observe the 

vibration of the cylinder due to the effect of the flow, an undamped simulation 

will be set. Similar parameters with the simulation of flow past a circular cylinder 

will be used in the VIV simulation. The smallest particle size inside the 

simulation domain will be set to be 0.02. For the mass and spring constant, the 

non-dimensional values from Shiels et al. [20] are selected. The vibration 

parameters used in the VIV simulation are listed in Table 3.  
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Table 3 Parameters for the VIV simulation 

No Parameters Value 

1 Non-dimensional mass 𝑀∗ 2.5 

2 Non-dimensional spring constant 𝐾∗ 4.96 

3 Non-dimensional damping constant 𝐶∗  0.0 

 

 

Figure 4 Time history of 𝐶𝑙, 𝐶𝑑, and 𝑦∗ of two-dimensional VIV simulation of 

a circular cylinder at 𝑅𝑒 = 100. 

At the start of the simulation, the cylinder was held steady until the flow passed 

the instability region at 𝑇 ≥ 5. After that, the vibration will be taken into account 

and the circular cylinder is allowed to move in 𝑦-direction. The 𝐶𝑙, 𝐶𝑑 and 𝑦∗ 

time history can be seen in Figure 4. The up and down motions of the cylinders 

are shown in Figure 5. These cylinder motions are followed by the generation of 

vortex sheds behind the wake of the cylinder. From Figures 4 and 5, it can be 

seen that the upward motion of the cylinder is followed by the increased value of 

𝐶𝑙 and vice versa. These phenomena are consistent throughout the simulation 

time. The vibration of the circular cylinder is already in stable condition at around 

𝑇 = 60. 

 

  
(a) (b) 

 

 

(c)  

Figure 5 Vorticity distributions of the VIV simulation of a circular cylinder at 

𝑅𝑒 = 100: (a) at 𝑇 = 96.25, (b) at 𝑇 = 98, and (c) at 𝑇 = 99.75. The white line 

in the middle of each figure is the horizontal line where 𝑦∗ = 0. 



 NS. of 2D VIV of Circular Cylinder Using LSMPS-VPM 293 

 

 

Table 4 shows the results of 𝐶𝑙𝑚𝑎𝑥, 𝐶̅𝑑, vibration amplitude 𝐴, and the motion 

frequency 𝑓 of the circular cylinder for the current LSMPS-VPM and the selected 

references. The results of 𝐶̅𝑑 and 𝐴 from LSMPS-VPM are slightly similar to 

both of the references. The results from Shiels et al. [20] show the largest 

difference in results for both 𝐶̅𝑑 and 𝐴 of LSMPS-VPM with a difference of 10% 

and 1.38%, respectively. On the other hand, the LSMPS-VPM 𝐶̅𝑙 and 𝑓 values 

are not in agreement with the references. The LSMPS-VPM result of 𝐶𝑙𝑚𝑎𝑥 is 

way off compared with the references; with a difference of 68.83% higher 

compared with Shiels et al. [20] and 56.6% higher compared with Shen et al. [3]. 

Similarly, the LSMPS-VPM result of 𝑓 is around 15.3% smaller compared with 

Shiels et al. [20]. From these results, it can be concluded that the present LSMPS-

VPM is already capable of simulating the VIV phenomenon. However, several 

parameters still show results that are not in agreement with the references.   

Table 4 Maximum lift (𝐶𝑙𝑚𝑎𝑥), mean drag (𝐶̅𝑑) coefficients, Amplitude of 

vibration (𝐴), and vibration frequency (𝑓) of the VIV simulation of a 

circular cylinder immersed in the fluid at 𝑅𝑒 = 100. 

𝐴𝑢𝑡ℎ𝑜𝑟𝑠 𝐶𝑙𝑚𝑎𝑥 𝐶̅𝑑 𝐴 𝑓 

Present authors 1.3 1.998 0.588 0.166 

Shiels et al 0.77 2.22 0.58 0.196 

Shen et al. 0.83 2.15 0.57 0.19 

5 Conclusions 

The LSMPS-VPM has been successfully developed to be able to simulate a 

simple two-dimensional VIV simulation. The present numerical simulation has 

also been tested and validated with several references. The results of the static 

simulation are found to agree well with those available in the literature. The 

LSMPS-VPM is also accurately capable of simulating the vorticity generation 

behind the cylinder wake. Similarly, the VIV simulation results show a good 

representation of vorticity generation behind the circular cylinder. However, 

several results of the VIV simulation are not in good agreement with the selected 

references. This is because the movement of the cylinder adds more complexity 

to solving the Brinkmann penalization term. Thus, the penalization region did not 

penalize completely to as close as zero, making the force calculation slightly 

higher or lower compared to the references. Overall, the LSMPS-VPM is already 

capable of reproducing a representative natural phenomenon of vortex generation 

past a bluff body in both static and VIV simulation.   
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