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Abstract. Least Square Moving Particle Semi-Implicit (LSMPS) Method is a
particle based spatial differential operator designed to solve various continuum
mechanics problems by using particle-based method computation. LSMPS is able
to solve the spatial derivative of a particle at any given locations when it has
sufficient number of neighboring particles even if the neighboring particles is
randomly distributed in contrast to standard finite difference method where the
particle must be distributed in a typical cartesian grid. In this study, the LSMPS
operator will be used to solve steady linear elasticity problems in both two-
dimensional and three-dimensional domain. The result obtained from LSMPS
numerical simulation is compared to the respective analytical solution, empirical
solution, or available commercial software ANSYS. In this study, the simulation
time required for each problem using the LSMPS discretization is also the research
interest and is tabulated as a reference for the reader.
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1 Introduction

Nowadays, the elasticity problems mostly are solved by applying the finite
element method (FEM) on the elasticity governing equations. However, there are
certain requirements in discretization by finite element method, such as the
requirement to generate a proper mesh grid for the domain and the transformation
of the governing equation into the weak-form or integral form in order to solve
the elasticity governing equation by FEM. This Finite Element Method is very
popular and many commercial software employs this method such as ANSYS®.

Particle based methods, unlike the mesh-based method counterpart has been long
developed. In the last 20 years, there are many particle-based method developed
for calculating spatial derivation as described by Chen et.al. in [1]. One of the
popular particle-based method SPH (Solid Particle Hydrodynamics) are able to
solve the elasticity differential equations without the usage of mesh and it is able
to solve the governing equations directly in its strong form (differential form).
This leads to a less complex discretization and solving procedure while also helps
to support for large deformation simulation as the particle can move freely
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compared to mesh-based method. Most of SPH methods implemented for
elasticity problem however are designed to solve for dynamic elasticity problem
such as Gray (2001) in [2]. However, the dynamic elasticity formulation is very
inefficient to be used to solve for static elasticity problem due to the high
computational effort required.

Therefore, a more efficient solution which solves specifically for the static
elasticity problem is needed. One of the methods that has been used for solving
the static elasticity problem is DC-PSE (Discretization Corrected Particle
Strength Exchange) method developed by Bourantas (2018) in [3] has
successfully applies this particle-based discretization method in hybrid with the
standard finite difference method to solve for the static linear elasticity problems.

Another promising particle-based discretization method is the Least Square
Moving Particle Semi-Implicit (LSMPS) Method introduced by Tamai &
Koshizuka (2014) in [4] which are the further development using least square
model of the older moving particle semi-implicit (MPS) method developed by
Koshizuka & Oka (1996) in [5] that has been booked by Koshizuka et.al. (2018)
in [6]. This method is mainly used for calculating particle-based spatial derivative
for application in fluid dynamics, and nuclear dynamics.

Considering the other particle-based discretization method that discussed before,
the author has decided to use a full LSMPS discretization method for the whole
domain of the elastic solid. The author intends to measure the accuracy of full
LSMPS discretization method and its computational time for solving the static
elasticity problems.

2 Theoretical Basis

2.1  Elasticity

Deformation of a solid material is caused by the application of load. While
elasticity is the ability of a material to resist this deformation. A material is
determined as an elastic material when its shape returns to its original shape when
the applied load is removed. The measurement for elasticity is defined by elastic
modulus such as the Young’s modulus which connects the factor of stress and
strain of the material due to compression or tension loading. The Young’s
modulus relation with stress and strain linearly calculated as in Eq. 1 as described
by Bauchau & Craig (2009) in [7].

o=E.c¢ 1)
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Solid materials such as aluminum and steel undergoes this elastic deformation
when deformation is sufficiently small and the material’s stress does not exceed
its yield stress value. When the deformation exceeds its elastic limit, plastic
deformation occurs on the material and the stress-strain relationship cannot be
approximated to be linear. This stress strain relation is shown using the general
stress-strain curve for typical isotropic material in Figure 1 as described in Sadd
(2021) in [8].
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Figure 1 General stress-strain curve in elasticity for selected materials.

2.2 Linear Elasticity

The linearization assumption of an elasticity model is only valid to be used for
very small strain or deformations where the material does not exceed its yielding
limit value (Yield Stress). Without using the linear assumption, the strain of a
material is related to its displacement by Eq. 2 and 3 for lagrangian and eulerian
space respectively as described by Sadd (2019) in [9].

£==[Vu+ (Vu)T — (Vu)".vu] )
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L= [qu + (qu)T - (qu)T- qu] (3)

Using the linearization assumption, the relation can be simplified into the Eq. 4
as described by Sadd (2021) in [8].

exY = %[Vu + (Vu)T] 4)

The constitutive equation is needed for the stress-strain relationship. The
constitutive equation used is the Hooke’s law for linear isotropic elastic material
which is shown as Eq. 5 by Bower (2010) in [10].

o=Atr(e).l+ 2ue (5)
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Where A and p are the Lamé constants and shear modulus respectively defined
by Bower (2010) in [10] as Eq. 6 and Eq. 7 respectively.

v.E

- (1+v)(1-2v) (6)
E
= )

These linear elasticity relations will be used to solve the Navier-Cauchy linear
elasticity equations in terms of displacement.

2.3 Linear Elasticity Governing Equation

The general momentum equilibrium differential equations for elasticity problem
consists of inertial forces, body forces, and the stresses acting on the material.
This is shown in in the following equation as in Bower (2010) in [10].

v
p§=v.0'+f €)]

Using the linearization assumption, the relation can be simplified into the Eq. 10.

V.o= —f (10)

For the boundary conditions, the known property can either be the stresses
applied on the surface (Neumann boundary conditions) or the displacement of the
particles (Dirichlet boundary conditions). For the Neumann boundary condition,
the equation is stated in Eq. 11.

u=d (11)
For the Dirichlet boundary condition, the boundary equation is stated in Eq. 12.

on =1t (12)

2.4  Least-Square Moving Particle Semi-Implicit Method

Least Squares Moving Particle Semi-implicit (LSMPS) Method was developed
by Tamai and Koshizuka (2014) [4] to simulate flow in incompressible flow with
free surfaces. This method is the improvement from the Moving Particle Semi-
implicit (MPS) Method which was also developed by Koshizuka and has been
written in a book by Koshizuka (2018) in [6]. The improvement of LSMPS
method from MPS which had been made is minimizing the error using weighted
least squares function. In this simulation the idea of LSMPS is adopted to
calculate the spatial derivatives.
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The main equation for LSMPS spatial approximation convolution as in Eq. 9.

D.f"(x;) = Hy M "b; ©)
The H,.. matrix is the monomial basis for the LSMPS method as in Eq. 10.

H, :=diag ((rs_lala!) ) (10)
1<|alsp

The M; and b; matrix is the least square approximation measure as in Eqg. 11 and
12 respectively.

M; = Yjen, <‘° (||x,- - xi]

)o(£)e" (—)) (1)
)P () (F(x) - £ (x,-))> (12)

The w is the weighting function used in the formulation, the weighting function
used is as stated in Eq. 13.

b; == Yjen (00 (||x]- - xi

(1—M)2 0<||x||<r

wlx,r,) = re Y= e (13)
0 x| = e

3 Computational Modelling

3.1 Program Structure

The code developed for this project is written in Python to obtain simple and
efficient code by benefiting from the reliable and simple vectorization syntax in
Python. For the linear algebra library, the scipy library is utilized, in order to
calculate the sparse matrix manipulation feature. The plotting then will use
matplotlib library.

3.2 Test Case Problem

The test case problems are simulated using the code to be compared with
analytical or commercial software available. The test cases consists of both 2D
and 3D cases with variation in problem sizes and geometry.



198 Dewangga Alfarisy & Lavi Rizki Zuhal

3.2.1 2D Cantilever Beam with Distributed Load

The first test case is a simple 2D cantilever beam that given distributed loading
on its top. The boundary used for this simulation is a no displacement boundary
(Dirichlet boundary) on the left side of the beam to simulate the cantilever effect,
with traction boundary (Dirichlet boundary) on the top side of the beam with
traction value W, and traction-free boundaries (Neumann boundary) on bottom
and right side of the beam. For this test case, the numerical deflection in y-axis is
compared with its respective analytical solution using Euler’s beam deflection
equation by Hibbeler (2003) in [11].The schematics for this test case and its
details is given in Figure 2 and Table 1.
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Figure 2 Test Case 1: 2D cantilever beam with distributed load.

Table 1 Mechanical Properties of Test Case 1.

Parameter Value Unit
Young’s Modulus (E) 200 GPa
Poisson’s Ratio (v) 0.3
L 1 m
b 0.05 m
Thickness 0.001 m
W, 20000 kN/m?
max

The analytical solution provided by Hibbeler (2003) in [11] is stated in Eq. 13.

wix) = 22 (x2 _ 41x + 612) (13)

3.2.2 2D Hollowed Plate with Tensile Load

The second test case is the stress concentration of a single hollowed plate given
tension load on its longitudinal axis. The boundaries used for this simulation is
a no displacement boundary on the left side of the plate, traction boundary on the
right side of the beam, and traction free boundaries on the top, bottom, and the
hole of the plate. For this test case, the stress concentration from the LSMPS
numerical calculation is compared to the results from empirical formula by Pilkey
(2005) in [12]. and commercial finite element software (ANSYS®). The
maximum stress concentration of the plate is expected to occur directly above
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and below the circular hole. The schematics for this test case and its details is
given in Figure 3 and Table 2.
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Figure 3 Test Case 2: 2D hollowed plate with tensile load.

Table 2 Mechanical Properties of Test Case 2.

Parameter Value Unit
Young’s Modulus (E) 200 GPa
Poisson’s Ratio (v) 0.3
L 0.6 m
b 0.3 m
Thickness 0.001 m
Winax 10000 KN/m?

The analytical solution provided by Pilkey (2005) in [12] is stated in Eg. 14 and
Eq. 15.

K. =3 -3.14(%) +3.667 (%)2 — 1527 (%)3 (14)

Omax = Ktﬁ (15)

h

3.2.3 3D Cantilever Beam with Shear Load

The third test case is a simple 3D cantilever beam that given shear loading on its
side. The boundary used for this simulation is a no displacement boundary
(Dirichlet boundary) on the left side of the beam to simulate the cantilever effect,
with traction boundary (Dirichlet boundary) on the right side of the beam with
traction value W, and traction-free boundaries (Neumann boundary) on top and
bottom side of the beam. For this test case, the numerical deflection in z-axis is
compared with its respective analytical solution using Euler’s beam deflection
equation by Hibbeler (2003) in [11]. The schematics for this test case and its
details is given in Figure 4 and Table 3.
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Figure 4 Test Case 3: 3D cantilever beam with shear load.

Table 3 Mechanical Properties of Test Case 3.

Parameter Value Unit
Young’s Modulus (E) 200 GPa
Poisson’s Ratio (v) 03
L 1 m
b 0.05 m
W 10000 kN/m?

The analytical solution provided by Hibbeler (2003) in [11] is stated in Eq. 16.

—Wx?
6EI

w(x) = (3L —x) (16)

3.3 Difference Calculation

In this research, the difference will be calculated using two different method,
maximum relative difference, and RMSE (root means square error). The
calculation for each difference calculation will be tabulated in Eg. 17 and Eq. 18
respectively.

YLSMPS—YEuler

Relative Dif ference = |

YEuler =8 max
(17)
n — 2
RMSE = \/lel(nsm;s YEuler) (18)
4 Results and Analysis

The numerical simulation for this research is done using a Python compiler from
Jupyter Notebook on ASUS® ROG GL553VD Laptop with Windows 10 OS and
equipped with 8 cores Intel® CORE™ i7 7700HQ processor and 12 Gb of RAM.
Therefore, most of the computational time in this project is measured from start
to finish by using the respective laptop specification. The result from LSMPS
method then will be compared with the respective analytical, empirical, or
commercial software ANSYS.
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4.1 2D Cantilever Beam with Distributed Load

For the beam geometry, the particle distribution is using cartesian grid with
constant particle spacing h. This particle distribution is illustrated in Figure 5 with
constant particle spacing of 0.00143 m with 24500 particles.
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Figure 5 Particle distribution of test case 1.

The simulation using LSMPS for this case is requiring a computational time of
235 seconds to simulate the model with 24500 particles with a relative difference
of 0.28 % and RMSE of 2.18E-6. The detailed report of the result is tabulated in
Table 4.

Table 4 Summary of Test Case 1 Results

Parameters Value Unit
Number of particles 24500
LSMPS maximum y-displacement -0.001203 m
Analytical maximum y-displacement -0.0012 m
Relative difference 0.28 %
RMSE 2.18E-6

The von mises stress, y-displacement, and deflection comparison then can be
tabulated in Figure 6, 7, and 8 respectively.
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Figure 6 Von mises contour of LSMPS method on test case 1
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Figure 7 Y-displacement contour of LSMPS method on test case 1.

Displacement Y

00000 { ———__ — LSMPS
o Euler's Beam Theory
-0.0002
-0.0004
m —0.0006

~0.0008
N\

N
~0.0010 R

N
-0.0012

0o 02 04 06 08 10
m

Figure 8 Y-Deflection comparison between LSMPS method and analytical.

4.2 2D Hollowed Plate with Tensile Load

For the plate geometry, the particle distribution is using cartesian grid with
constant particle spacing h. This particle distribution is using constant particle
spacing of 0.00133 m with 91754 particles as described in Figure 9.

Figure 9 Particle distribution of test case 2.

The simulation using LSMPS for this case is requiring a computational time of
1220 seconds to simulate the model with 24500 particles with a relative
difference of 2.31 %. The detailed report of the result is tabulated in Table 5.
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Table 5 Summary of test case 2 results

203

Parameters Value Unit
Kt 2.1559 kN/m?
LSMPS maximum x-dir. stress 44114 kN/m?
Empirical maximum x-dir. stress 43188 kN/m?
ANSY'S maximum x-dir. stress 43731
Relative difference LSMPS to analytical 231 %
Relative difference LSMPS to ANSYS 0.87 %

The von mises stress, and x-direction stress comparison then can be tabulated in

Figure 10, and 11 respectively.
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Figure 10 Von mises stress contour of LSMPS and ANSYS comparison on test

case 1
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Figure 11 X-direction stress contour of LSMPS and ANSYS comparison on test

case 1
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4.3 3D Cantilever Beam with Shear Load

For the beam geometry, the particle distribution is using cartesian grid with
constant particle spacing h. This particle distribution is using constant particle

spacing of 0.005 m with 80000 particles.

The simulation using LSMPS for this case is requiring a computational time of
11794 seconds to simulate the model with 24500 particles with a relative
difference of 2.04 % and RMSE of 1.99E-5 to the analytical result. Compared to
the commercial FEM software ANSYS, the relative difference is 2.04%. The
detailed report of the result is tabulated in Table 6.

Table 6 Summary of test case 3 results

Parameters Value Unit
LSMPS maximum z-displacement -0.00199 m
Analytical maximum z-displacement -0.00204 m
ANSYS maximum z-displacement -0.00204 m
LSMPS relative difference to analytical 2.04 %
LSMPS relative difference to ANSYS 2.04 %
LSMPS RMSE to analytical 1.99E-5

The von mises stress, y-displacement, and deflection comparison then can be
tabulated in Figure 12, 13, and 14 respectively.
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Figure 12 VVon mises contour of LSMPS method on test case 3.
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Figure 13 Z-displacement contour of LSMPS method on test case 3.
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Figure 14 Z-deflection comparison between LSMPS method and analytical.

4.4 Summary

Based on the result of LSMPS method on solving both 2D and 3D cases, the
results can be summarized in Table 7.

Table 7 Mechanical Properties of Test Case 1.

Particle Relative RMSE
Case 2D/3D Number Difference (%)
1 2D 24500 0.28 2.18E-6
2 2D 91754 2.31 -

3 3D 64000 2.04 1.99E-5




206 Dewangga Alfarisy & Lavi Rizki Zuhal

5 Conclusion

Based on the LSMPS simulation result using the developed code, it can be
concluded that the LSMPS differential operator is able to achieve high accuracy
for steady-state linear elasticity problem. The static elasticity approximation
result developed using LSMPS is yielding at most 2.31% difference with
commercial software, analytical, or empirical result.
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Nomenclature

E : Young’s modulus A : Lamé constants
€ : Strain in langrangian coordinate u : Shear modulus
u : Deformation w(x) : Analytical deflection
X : Strain in eulerian coordinate I : Moment of inertia
o : Stress L : Beam length
f : Applied force x . X-coordinate position in beam
H, . Hrs matrix of LSMPS W . Applied force in analytical
approximation solution
M; : Mi matrix of LSMPS K : Plate constant
approximation
R : Radius
o : Weight function of LSMPS
approximation v : Poisson’s ratio
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