
Proceedings of the 2nd ITB Graduate School Conference 

Strengthening Multidisciplinary Research to Enhance its 

Impact on Society 

July 21, 2022 

ISSN: 2963-718X 

 

Copyright © 2022 Published by ITB, ISSN: 2963-718X  193 

Computational Modelling of Steady State Linear Elasticity 

using Least Square Moving Particle Semi-Implicit Method 

Dewangga Alfarisy* & Lavi Rizki Zuhal 

Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology  
*Email: dewangga.alfarisy@gmail.com 

 

 

Abstract. Least Square Moving Particle Semi-Implicit (LSMPS) Method is a 

particle based spatial differential operator designed to solve various continuum 

mechanics problems by using particle-based method computation. LSMPS is able 

to solve the spatial derivative of a particle at any given locations when it has 

sufficient number of neighboring particles even if the neighboring particles is 

randomly distributed in contrast to standard finite difference method where the 

particle must be distributed in a typical cartesian grid. In this study, the LSMPS 

operator will be used to solve steady linear elasticity problems in both two-

dimensional and three-dimensional domain. The result obtained from LSMPS 

numerical simulation is compared to the respective analytical solution, empirical 

solution, or available commercial software ANSYS. In this study, the simulation 

time required for each problem using the LSMPS discretization is also the research 

interest and is tabulated as a reference for the reader. 

Keywords: linear elasticity; particle-based simulation; and structure analysis. 

1 Introduction 

Nowadays, the elasticity problems mostly are solved by applying the finite 

element method (FEM) on the elasticity governing equations. However, there are 

certain requirements in discretization by finite element method, such as the 

requirement to generate a proper mesh grid for the domain and the transformation 

of the governing equation into the weak-form or integral form in order to solve 

the elasticity governing equation by FEM. This Finite Element Method is very 

popular and many commercial software employs this method such as ANSYS®. 

Particle based methods, unlike the mesh-based method counterpart has been long 

developed. In the last 20 years, there are many particle-based method developed 

for calculating spatial derivation as described by Chen et.al. in [1]. One of the 

popular particle-based method SPH (Solid Particle Hydrodynamics) are able to 

solve the elasticity differential equations without the usage of mesh and it is able 

to solve the governing equations directly in its strong form (differential form). 

This leads to a less complex discretization and solving procedure while also helps 

to support for large deformation simulation as the particle can move freely 
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compared to mesh-based method. Most of SPH methods implemented for 

elasticity problem however are designed to solve for dynamic elasticity problem 

such as Gray (2001) in [2]. However, the dynamic elasticity formulation is very 

inefficient to be used to solve for static elasticity problem due to the high 

computational effort required.   

Therefore, a more efficient solution which solves specifically for the static 

elasticity problem is needed. One of the methods that has been used for solving 

the static elasticity problem is DC-PSE (Discretization Corrected Particle 

Strength Exchange) method developed by Bourantas (2018) in [3] has 

successfully applies this particle-based discretization method in hybrid with the 

standard finite difference method to solve for the static linear elasticity problems.  

Another promising particle-based discretization method is the Least Square 

Moving Particle Semi-Implicit (LSMPS) Method introduced by Tamai & 

Koshizuka (2014) in [4] which are the further development using least square 

model of the older moving particle semi-implicit (MPS) method developed by 

Koshizuka & Oka (1996) in [5] that has been booked by Koshizuka et.al. (2018) 

in [6]. This method is mainly used for calculating particle-based spatial derivative 

for application in fluid dynamics, and nuclear dynamics.  

Considering the other particle-based discretization method that discussed before, 

the author has decided to use a full LSMPS discretization method for the whole 

domain of the elastic solid. The author intends to measure the accuracy of full 

LSMPS discretization method and its computational time for solving the static 

elasticity problems. 

2 Theoretical Basis 

2.1 Elasticity 

Deformation of a solid material is caused by the application of load. While 

elasticity is the ability of a material to resist this deformation. A material is 

determined as an elastic material when its shape returns to its original shape when 

the applied load is removed. The measurement for elasticity is defined by elastic 

modulus such as the Young’s modulus which connects the factor of stress and 

strain of the material due to compression or tension loading. The Young’s 

modulus relation with stress and strain linearly calculated as in Eq. 1 as described 

by Bauchau & Craig (2009) in [7].  

𝝈 =  𝑬. 𝜺 (1) 
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Solid materials such as aluminum and steel undergoes this elastic deformation 

when deformation is sufficiently small and the material’s stress does not exceed 

its yield stress value. When the deformation exceeds its elastic limit, plastic 

deformation occurs on the material and the stress-strain relationship cannot be 

approximated to be linear. This stress strain relation is shown using the general 

stress-strain curve for typical isotropic material in Figure 1 as described in Sadd 

(2021) in [8]. 

 

Figure 1 General stress-strain curve in elasticity for selected materials. 

2.2 Linear Elasticity 

The linearization assumption of an elasticity model is only valid to be used for 

very small strain or deformations where the material does not exceed its yielding 

limit value (Yield Stress). Without using the linear assumption, the strain of a 

material is related to its displacement by Eq. 2 and 3 for lagrangian and eulerian 

space respectively as described by Sadd (2019) in [9]. 

𝛆 =
1

2
[∇𝒖 + (∇𝒖)𝑇 − (∇𝒖)𝑇 . ∇𝒖] (2) 

𝚺 =
1

2
[∇𝑥𝒖 + (∇𝑥𝒖)𝑇 − (∇𝑥𝒖)𝑇 . ∇𝑥𝒖] (3) 

Using the linearization assumption, the relation can be simplified into the Eq. 4 

as described by Sadd (2021) in [8]. 

𝜺 ≅ 𝚺 =
1

2
[∇𝒖 + (∇𝒖)𝑇] (4) 

The constitutive equation is needed for the stress-strain relationship. The 

constitutive equation used is the Hooke’s law for linear isotropic elastic material 

which is shown as Eq. 5 by Bower (2010) in [10]. 

𝝈 = 𝜆. 𝑡𝑟(𝜺). 𝐼 + 2𝜇𝛆 (5) 
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Where 𝜆 and 𝜇 are the Lamé constants and shear modulus respectively defined 

by Bower (2010) in [10] as Eq. 6 and Eq. 7 respectively. 

𝜆 =
𝜐.𝐸

(1+𝜐)(1−2𝜐)
 (6) 

𝜇 =
𝐸

2.(1+𝜐)
 (7) 

These linear elasticity relations will be used to solve the Navier-Cauchy linear 

elasticity equations in terms of displacement. 

2.3 Linear Elasticity Governing Equation 

The general momentum equilibrium differential equations for elasticity problem 

consists of inertial forces, body forces, and the stresses acting on the material. 

This is shown in in the following equation as in Bower (2010) in [10]. 

ρ
∂𝑽

∂𝑡
= ∇. 𝛔 + 𝒇 (9) 

Using the linearization assumption, the relation can be simplified into the Eq. 10. 

∇. 𝛔 =  −𝒇 (10) 

For the boundary conditions, the known property can either be the stresses 

applied on the surface (Neumann boundary conditions) or the displacement of the 

particles (Dirichlet boundary conditions). For the Neumann boundary condition, 

the equation is stated in Eq. 11. 

𝒖 =  𝒅 (11) 

For the Dirichlet boundary condition, the boundary equation is stated in Eq. 12. 

𝛔. 𝒏 =  𝒕 (12) 

2.4 Least-Square Moving Particle Semi-Implicit Method 

Least Squares Moving Particle Semi-implicit (LSMPS) Method was developed 

by Tamai and Koshizuka (2014) [4] to simulate flow in incompressible flow with 

free surfaces. This method is the improvement from the Moving Particle Semi-

implicit (MPS) Method which was also developed by Koshizuka and has been 

written in a book by Koshizuka (2018) in [6]. The improvement of LSMPS 

method from MPS which had been made is minimizing the error using weighted 

least squares function. In this simulation the idea of LSMPS is adopted to 

calculate the spatial derivatives. 
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The main equation for LSMPS spatial approximation convolution as in Eq. 9. 

𝑫𝒙𝑓ℎ(𝒙𝒊) = 𝑯𝒓𝒔
𝑴𝑖

−1𝒃𝒊 (9) 

The 𝑯𝒓𝒔
 matrix is the monomial basis for the LSMPS method as in Eq. 10. 

𝑯𝒓𝒔
≔ 𝑑𝑖𝑎𝑔 ((𝑟𝑠

−|𝑎|
𝑎!)

1≤|𝑎|≤𝑝
) (10) 

The 𝑴𝒊 and 𝒃𝒊 matrix is the least square approximation measure as in Eq. 11 and 

12 respectively.  

𝑴𝒊 ≔ ∑ (𝛚 (||𝒙𝒋 − 𝒙𝒊||) 𝒑 (
𝒙𝑗−𝒙𝒊

𝑟𝑠
) 𝒑𝑻 (

𝒙𝒋−𝒙𝒊

𝑟𝑠
))𝑗∈Λ𝑖

 (11) 

𝒃𝒊 ≔ ∑ (𝛚 (||𝒙𝒋 − 𝒙𝒊||) 𝒑 (
𝒙𝒋−𝒙𝒊

𝑟𝑠
) (𝒇(𝒙𝒋) − 𝒇(𝒙𝒊)))𝑗∈Λ𝑖

 (12) 

The 𝛚 is the weighting function used in the formulation, the weighting function 

used is as stated in Eq. 13. 

𝝎(𝒙, 𝑟𝑒)  =  {(1 −
||𝒙||

 re
)

2

       ,0 ≤ ||𝑥|| < re

0                   , ||x||  ≥ re

  (13) 

3 Computational Modelling 

3.1 Program Structure 

The code developed for this project is written in Python to obtain simple and 

efficient code by benefiting from the reliable and simple vectorization syntax in 

Python. For the linear algebra library, the scipy library is utilized, in order to 

calculate the sparse matrix manipulation feature. The plotting then will use 

matplotlib library. 

3.2 Test Case Problem 

The test case problems are simulated using the code to be compared with 

analytical or commercial software available. The test cases consists of both 2D 

and 3D cases with variation in problem sizes and geometry. 
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3.2.1 2D Cantilever Beam with Distributed Load 

The first test case is a simple 2D cantilever beam that given distributed loading 

on its top. The boundary used for this simulation is a no displacement boundary 

(Dirichlet boundary) on the left side of the beam to simulate the cantilever effect, 

with traction boundary (Dirichlet boundary) on the top side of the beam with 

traction value W, and traction-free boundaries (Neumann boundary) on bottom 

and right side of the beam. For this test case, the numerical deflection in y-axis is 

compared with its respective analytical solution using Euler’s beam deflection 

equation by Hibbeler (2003) in [11].The schematics for this test case and its 

details is given in Figure 2 and Table 1. 

 

Figure 2 Test Case 1: 2D cantilever beam with distributed load. 

Table 1 Mechanical Properties of Test Case 1. 

Parameter Value Unit 

Young’s Modulus (E) 200 GPa 

Poisson’s Ratio (ν) 0.3  

L 1 m 

b 0.05 m 

Thickness 0.001 m 

Wmax 
20000 kN/m2 

The analytical solution provided by Hibbeler (2003) in [11] is stated in Eq. 13. 

𝑤(𝑥) =
−𝑊𝑥2

24𝐸𝐼
(𝑥2 − 4𝐿𝑥 + 6𝐿2) (13) 

3.2.2 2D Hollowed Plate with Tensile Load 

The second test case is the stress concentration of a single hollowed plate given 

tension load on its longitudinal axis.  The boundaries used for this simulation is 

a no displacement boundary on the left side of the plate, traction boundary on the 

right side of the beam, and traction free boundaries on the top, bottom, and the 

hole of the plate. For this test case, the stress concentration from the LSMPS 

numerical calculation is compared to the results from empirical formula by Pilkey 

(2005) in [12]. and commercial finite element software (ANSYS®). The 

maximum stress concentration of the plate is expected to occur directly above 
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and below the circular hole. The schematics for this test case and its details is 

given in Figure 3 and Table 2. 

 

Figure 3 Test Case 2: 2D hollowed plate with tensile load. 

Table 2 Mechanical Properties of Test Case 2. 

Parameter Value Unit 

Young’s Modulus (E) 200 GPa 

Poisson’s Ratio (𝜈) 0.3  

L 0.6 m 

b 0.3 m 

Thickness 0.001 m 

Wmax 
10000 kN/m2 

The analytical solution provided by Pilkey (2005) in [12] is stated in Eq. 14 and 

Eq. 15. 

𝐾𝑡 = 3 − 3.14 (
2R

h
) + 3.667 (

2R

h
)

2
− 1.527 (

2R

h
)

3
 (14) 

σ𝑚𝑎𝑥 = 𝐾𝑡
1

1−(
2R

h
)
 (15) 

3.2.3 3D Cantilever Beam with Shear Load 

The third test case is a simple 3D cantilever beam that given shear loading on its 

side. The boundary used for this simulation is a no displacement boundary 

(Dirichlet boundary) on the left side of the beam to simulate the cantilever effect, 

with traction boundary (Dirichlet boundary) on the right side of the beam with 

traction value W, and traction-free boundaries (Neumann boundary) on top and 

bottom side of the beam. For this test case, the numerical deflection in z-axis is 

compared with its respective analytical solution using Euler’s beam deflection 

equation by Hibbeler (2003) in [11]. The schematics for this test case and its 

details is given in Figure 4 and Table 3. 
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Figure 4 Test Case 3: 3D cantilever beam with shear load. 

Table 3 Mechanical Properties of Test Case 3. 

Parameter Value Unit 

Young’s Modulus (E) 200 GPa 

Poisson’s Ratio (𝜈) 0.3  

L 1 m 

b 0.05 m 

W 
10000 kN/m2 

The analytical solution provided by Hibbeler (2003) in [11] is stated in Eq. 16. 

𝑤(𝑥) =
−𝑊𝑥2

6𝐸𝐼
(3𝐿 − 𝑥) (16) 

3.3 Difference Calculation 

In this research, the difference will be calculated using two different method, 

maximum relative difference, and RMSE (root means square error). The 

calculation for each difference calculation will be tabulated in Eq. 17 and Eq. 18 

respectively. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |
𝑦𝐿𝑆𝑀𝑃𝑆−𝑦𝐸𝑢𝑙𝑒𝑟

𝑦𝐸𝑢𝑙𝑒𝑟
|

δ=δ𝑚𝑎𝑥

 (17)  

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝐿𝑆𝑀𝑃𝑆−𝑦𝐸𝑢𝑙𝑒𝑟)2𝑛

𝑖=1

𝑛
 (18) 

4 Results and Analysis 

The numerical simulation for this research is done using a Python compiler from 

Jupyter Notebook on ASUS® ROG GL553VD Laptop with Windows 10 OS and 

equipped with 8 cores Intel® CORETM i7 7700HQ processor and 12 Gb of RAM. 

Therefore, most of the computational time in this project is measured from start 

to finish by using the respective laptop specification. The result from LSMPS 

method then will be compared with the respective analytical, empirical, or 

commercial software ANSYS. 
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4.1 2D Cantilever Beam with Distributed Load 

For the beam geometry, the particle distribution is using cartesian grid with 

constant particle spacing h. This particle distribution is illustrated in Figure 5 with 

constant particle spacing of 0.00143 m with 24500 particles.  

 

Figure 5 Particle distribution of test case 1. 

The simulation using LSMPS for this case is requiring a computational time of 

235 seconds to simulate the model with 24500 particles with a relative difference 

of 0.28 % and RMSE of 2.18E-6. The detailed report of the result is tabulated in 

Table 4. 

Table 4 Summary of Test Case 1 Results 

Parameters Value Unit 

Number of particles 24500  

LSMPS maximum y-displacement -0.001203 m 

Analytical maximum y-displacement -0.0012 m 

Relative difference 0.28 % 

RMSE 2.18E-6  

The von mises stress, y-displacement, and deflection comparison then can be 

tabulated in Figure 6, 7, and 8 respectively. 

 

Figure 6 Von mises contour of LSMPS method on test case 1 
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Figure 7 Y-displacement contour of LSMPS method on test case 1. 

 

Figure 8 Y-Deflection comparison between LSMPS method and analytical. 

4.2 2D Hollowed Plate with Tensile Load 

For the plate geometry, the particle distribution is using cartesian grid with 

constant particle spacing h. This particle distribution is using constant particle 

spacing of 0.00133 m with 91754 particles as described in Figure 9.  

 

Figure 9 Particle distribution of test case 2. 

The simulation using LSMPS for this case is requiring a computational time of 

1220 seconds to simulate the model with 24500 particles with a relative 

difference of 2.31 %. The detailed report of the result is tabulated in Table 5. 
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Table 5 Summary of test case 2 results 

Parameters Value Unit 

Kt 2.1559 kN/m2 

LSMPS maximum x-dir. stress 44114 kN/m2 

Empirical maximum x-dir. stress 43188 kN/m2 

ANSYS maximum x-dir. stress 43731  

Relative difference LSMPS to analytical 2.31 % 

Relative difference LSMPS to ANSYS 0.87 % 

The von mises stress, and x-direction stress comparison then can be tabulated in 

Figure 10, and 11 respectively. 

 

Figure 10 Von mises stress contour of LSMPS and ANSYS comparison on test 

case 1 

 

Figure 11 X-direction stress contour of LSMPS and ANSYS comparison on test 

case 1 
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4.3 3D Cantilever Beam with Shear Load 

For the beam geometry, the particle distribution is using cartesian grid with 

constant particle spacing h. This particle distribution is using constant particle 

spacing of 0.005 m with 80000 particles.  

The simulation using LSMPS for this case is requiring a computational time of 

11794 seconds to simulate the model with 24500 particles with a relative 

difference of 2.04 % and RMSE of 1.99E-5 to the analytical result. Compared to 

the commercial FEM software ANSYS, the relative difference is 2.04%. The 

detailed report of the result is tabulated in Table 6. 

Table 6 Summary of test case 3 results 

Parameters Value Unit 

LSMPS maximum z-displacement -0.00199 m 

Analytical maximum z-displacement -0.00204 m 

ANSYS maximum z-displacement -0.00204 m 

LSMPS relative difference to analytical 2.04 % 

LSMPS relative difference to ANSYS 2.04 % 

LSMPS RMSE to analytical 1.99E-5  

The von mises stress, y-displacement, and deflection comparison then can be 

tabulated in Figure 12, 13, and 14 respectively. 

 

Figure 12 Von mises contour of LSMPS method on test case 3. 
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Figure 13 Z-displacement contour of LSMPS method on test case 3. 

 

Figure 14 Z-deflection comparison between LSMPS method and analytical. 

4.4 Summary 

Based on the result of LSMPS method on solving both 2D and 3D cases, the 

results can be summarized in Table 7. 

Table 7 Mechanical Properties of Test Case 1. 

Case 2D/3D 
Particle 

Number 

Relative 

Difference (%) 

RMSE 

1 2D 24500 0.28 2.18E-6 

2 2D 91754 2.31 - 

3 3D 64000 2.04 1.99E-5 
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5 Conclusion 

Based on the LSMPS simulation result using the developed code, it can be 

concluded that the LSMPS differential operator is able to achieve high accuracy 

for steady-state linear elasticity problem. The static elasticity approximation 

result developed using LSMPS is yielding at most 2.31% difference with 

commercial software, analytical, or empirical result. 

Acknowledgement 

We would like to thank Lab Flow Science and Engineering of Faculty of 

Mechanical and Aerospace Engineering, Bandung Institute of Technology for 

endless support and the continuous research program. 

Nomenclature 

𝑬 : Young’s modulus 

𝛆 : Strain in langrangian coordinate 

𝒖 : Deformation 

𝚺 : Strain in eulerian coordinate 

𝝈 : Stress 

𝒇 : Applied force 

𝑯𝒓𝒔
 : Hrs matrix of LSMPS 

approximation 

𝑴𝒊 : Mi matrix of LSMPS 

approximation 

𝝎 : Weight function of LSMPS 

approximation 

𝜆 : Lamé constants 

𝜇 : Shear modulus 

𝑤(𝑥) : Analytical deflection 

𝐼 : Moment of inertia 

𝐿 : Beam length 

𝑥 : x-coordinate position in beam 

𝑊 : Applied force in analytical 

solution 

𝐾𝑡 : Plate constant 

𝑅 : Radius 

ν : Poisson’s ratio 
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