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Abstract. Vortices are topological defects that exist in the planar dimension. In 

this paper, we present first-order formalism to Maxwell-Chern-Simons-Higgs 

model with general coupling functions using the BPS Lagrangian method. We 

obtain finite an energy solution with the potential that depends on the generalized 

functions ,(| | )w N and ,(| | )h N . We introduce some particular generalized 

functions and present the numerical solution to the obtained BPS equations. We 

find that the vortex solution of our model does not have electric field and the 

energy density forms a ring-like structure. Using the conserved local (1)U

current, we obtain that the charge density of this model is localized and the charge 

itself is proportional to the magnetic flux. 

Keywords: BPS equations; BPS Lagrangian; Maxwell-Chern-Simons-Higgs; 

topological defects; vortex. 

1 Introduction 

Topological defects have become an interesting topic of discussion in recent 

years. This type of solutions which arise from a nonlinear model can be 

interpreted as a type of particles that is different from the usual elementary 

particles in the Standard Model. They have distinct topological property from 

their vacuum such that there are no physical processes with finite amount of 

energy which can deform these solutions into their vacuum. One particular kind 

of topological defects in planar space is known as vortices, Manton et al. and 

Weinberg [1, 2]. There exist two kind of vortices, namely global and gauged 

vortices, each corresponds to the global and local (1)U  transformation 

respectively. The generalization of global vortices in 3+1 dimensional spacetime 

have their application in cosmology. Kibble mechanism explains how the 

formation of cosmic strings may occurs in the early universe during the course of 
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symmetry-breaking cosmological phase transitions, Weinberg and Kibble [2, 3]. 

Gauged vortices also have their own interesting application in condensed matter 

physics, mainly in the superconductor of the second group that has been studied 

by Abrikosov in [4]. 

The standard kinetic term of the gauge field in gauged vortices is the Maxwell 

Lagrangian. However, in the odd-dimensional spacetime, there exist another 

possible kinetic term for the gauge field that is Lorentz invariant, local, and 

remain gauge invariant up to its boundary term, that is the Chern-Simons term, 

Dunne [5]. In planar dimension, coupling between Chern-Simons term and matter 

field give rise into a new kind of particles which have distinct statistics from the 

ordinary bosons and fermions. It was studied by Wilczek in [6] and is called 

anyons. 

Mathematically, it is possible to consider a model in which the kinetic terms of 

the gauge field are described both by the Maxwell and Chern-Simons term. In 

one of the earliest studies, Lee et al. [7] shows that coupling between Maxwell-

Chern-Simons term and the Higgs field (MCSH) give rise into electrically 

charged vortices. The first differential formulation in this study leads into a 

conclusion that the self-dual solution is static and there is an identification 

between the scalar gauge field and the neutral scalar field, removing the gauge 

invariant problem. This study is generalized by Bazeia et al. in [7] by adding 

generalized coupling functions. In this generalization, coupling functions 

between Maxwell and the kinetic term of neutral scalar field remain identical, 

which makes the scalar gauge and neutral scalar field remain identical. Different 

approach was done by Torres in Ref. [8] by introducing anomalous magnetic 

moment to the coupling between gauge and Higgs field. This addition makes the 

second order dynamical equation for the gauge field to be satisfied by first order 

differential equation. This enables the temporal gauge field to be written in terms 

of the Higgs field, thus removing the gauge invariant problem. Generalization of 

this model was done in a quite similar manner as in the previous model1 was done 

by Andreade et al. [9]. Recent study by Andreade et al. [10] shows that vortex 

solution may exist in the generalized MCSH model even with no neutral scalar 

field and minimal coupling between gauge and the Higgs field. Approach to this 

model was done by considering the stressless condition. In this study, first-order 

differential equation is introduced in the analysis such that is satisfy stressless 

condition and the equation of motion. The consequence of this is that the equation 

which relates scalar gauge field to the Higgs field is obtained. 

We learn that in the previous studies, the identification between temporal gauge 

field and a scalar field is need to be done to avoid violating gauge invariant 

 
1 The one with neutral scalar field. 
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condition. In this paper, we attempt to obtain vortex solution with all the involved 

fields independent to one another. The method that we will use to obtain the first-

order formalism is the BPS Lagrangian method introduced by Ardian in [11]. 

This paper consists of four sections. In Sec. II, we introduce the model and apply 

the radially symmetric ansatz into it. In Sec. III, we implement the BPS 

Lagrangian method into the model and analyze the obtained equations 

numerically. Finally, we conclude this study in Sec. IV where we give our final 

comment and discuss the possibility for further research. 

2 Generalized Maxwell-Chern-Simons-Higgs Model 

In this paper, we consider the most general version of the model with the 

Lagrangian density 
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where ,(| | )h N , ,(| | )w N , and ,(| | )G N  are the generalized coupling 

functions that satisfy positive-definite and dimensionless condition, ,(| | )V N

is a general potential with non-negative value, F A A     −=  is the abelian 

gauge curvature tensor, and ieAD    =  +  describes the minimal coupling 

between Higgs and the gauge field. 

The equation of motions for the fields in this model are given by the Euler-

Lagrange equations. For the gauge field, we have 

 ( )  ,hF J F  

 + =  (2) 

where 

 ( ) ,J D Diew     −=  (3) 

is the (1)U  conserved current and 

 (1/ 2) ,F F 

= ò  (4) 

is the dual of gauge curvature tensor. From eq. (2), one can observe that the 

temporal gauge, 0 0A = , cannot be used since it will lead to the trivial solution. 

The remaining equation of motions to Lagrangian (1) can be written as 
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We may also calculate the energy-momentum tensor for the latter calculational 

purpose. 
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We are interested to the radially-symmetric static solution of the form 

 0 0;    ( ),( , ) ( ) ( );     inr vg r e N rN A A r  =    (8a) 

 ( )
ˆ

( , ) ( ) ,A r a r n
er


 = − −  (8b) 

with v  being the vacuum expectation value of Higgs field and 1, 2,n  =  is 

the winding number. Substituting ansatz (8) into the Lagrangian density (1), we 

obtain 
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We may also take the 00-component of the energy-momentum tensor and write 

it in terms of the defined ansatz so that the energy density of this model is 
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where we have ( , )w w g N , ( , )h h g N , ( , )V V g N , and the primed 

function denotes its derivative with respect to r . 

3 BPS Equations Formalism 

3.1 BPS Lagrangian Method 

It has been shown in [11] that the BPS Lagrangian method is sufficient to derive 

the BPS equations for vortices in the standard and generalized Maxwell-Higgs 

and Born-Infeld-Higgs models. Furthermore, the method has been used for the 

case of Skyrme model [12]. In the BPS Lagrangian method, we basically trying 

to rewrite the original Lagrangian density into quadratic terms that consist of all 

first-derivative of the fields by subtracting it with a BPS Lagranigan density, 

BPSL . The Bogomolnyi’s equations are obtained when all these quadratic terms 

are equal to zero, 0BPS =−L L . The cost for introducing this BPS Lagrangian 

density is additional constraint equations, which are the Euler-Lagrange 

equations of the BPS Lagrangian density, that must be considered in solving the 

Bogomolnyi’s equations. As an example, a Lagrangian density of a model with 

k -scalar fields can be written down as, 

 ( )1

1

,( ; ;  , , )
k

i i N j

BPS

i

f x    
=

−  = −L L  (11) 

with , 11, , 1, ,i i kj  − + = . Setting 0BPS =−L L , the Bogomolnyi’s 

equations are given by 

 
1, , ) .( ; ;i i N jf x      =  (12) 

For the most of well-known cases, the BPS Lagrangian density consists of only 

boundary terms, or in another word its Euler-Lagrange equations are trivial [11]. 

In general, the BPS Lagrangian density can also contain non-boundary terms such 

as shown in [13] which results in BPS vortices with non-zero stress tensor in the 
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generalized Maxwell-Higgs and Born-Infeld-Higgs models. In this article, we 

consider a BPS Lagrangian density only with non-boundary terms of the form2, 

 31 2
0 0 ( ) ,'( ) '( ) 'BPS

XX X
g r a r A

r r r
X r− −= −−L  (13) 

where 0( , , , )i iX X g a A N  with 0,1,2,3i = . This BPS Lagrangian is not the 

most BPS Lagrangian but it is be sufficient for our purpose in this article, as it 

will be clear in the next sections. 

3.2 BPS Equations for All Effective Fields 

In the BPS limit, we calculate 0BPS =−L L  and solve the equation for each field 

one by one. We obtain, 

 1

2
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=  (14d) 

and a constraint equation. This constrain function can be written in the form of a 

polynomial in r . Since the coefficients of this polynomial do not contain r
explicitly, this constraint equation will be satisfied if each of the coefficient is 

zero, 
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Besides the above constraint equation, there are other conditions that must be 

satisfied by the BPS Lagrangian. From the Euler-Lagrange equations of the BPS 

 
2 We follow suggestions in [13] to determine explicit radial coordinate dependent for 

each term in the BPS Lagrangian density. 
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Lagrangian, we may substitute the BPS equations (14) into these equations. We 

then write the equations in polynomial of r and setting all the coefficients to zero. 

From the coefficient of 
0r -term, we find 

 2 2 0( , , ),g AXX N  (16a) 

 0 0( , , ) ( , , ),     ( 1,3,4).l lX aY g A N Z g A N l= + =  (16b) 

Substituting the above results into the coefficient for 
1r -term, we write the 

obtained result as a polynomial in ( )a r . From 
0 1a r -term, we obtain 
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We consider a simple case where 0 0X = such that 
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where 2 1sx =  denotes the choice of signature in the solutions of 2X . 

If we hold the dependency of 0A with respect to r , then the coefficient for 
2 1a r

-term requires 0 = . Therefore, we must consider 0 0( )A r A , where 0A is a 

constant. This condition and the the Bogomolnyi’s equation (14c) imply 
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with a condition 0 2sgn( sgn( sgn( ) 1sgn( ) ) )A xe s    = + . Substituting those 

functions into all the constrain equations and the equation (15b), we find the 

coefficient of 
2a gives 
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We find that the only possible solution is 1 4 0Z Z= = and the solution to (22) is 
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In this BPS limit, one may show that the energy density (10) becomes 

 

2 222 2
2 02

2 0 2 2 2

0

,
2 ( )

BPS

A esx v d ag wh
sx A e

A e r dr
B





= − +  (25) 

With B being the two-dimensional magnetic field that is defined as 

 .(
1
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e
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r r
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To this model, we apply the standard boundary condition for topological vortices 

 0(0) 0,       (0) ,       (0) ,g a n N N= = =  (27a) 
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 ) 1,       ( ) 0,     .  ( )(g a N N =  =  =  (27b) 

Integrating the BPS energy density (25) with respect to the boundary condition 

(27) throughout all space, we obtain 
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The negative sign indicates that positive 2sx is related to negative winding 

number, and vice versa. 

3.3 Numerical Calculation 

For the following calculation, we do the rescaling 
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In this model, there are three generalized coupling functions and a potential that 

are free to choose. Nevertheless, equation (21) and the positive definite condition 

of (23) reduce the number of free parameters to two. From this, we define the 

constraint functions to be 
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One may check that the above definition satisfy the positive-definite condition. 

With this coupling functions, the potential becomes 
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and the BPS equations, 
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From eq. (25), the energy density of this model can be written as below. 
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The behavior of the fields near origin may give better understanding to the 

boundary condition for numerical analysis. By writing the solution to equations 

(32) as power series, we obtain 
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From the above result, we may implement the boundary condition for neutral 

scalar field near its origin as '(0) 0N = . 

For the numerical analysis, we present the solution for several values of the 

constant temporal gauge field, namely 0A = 0.80 (dotted), 0A = 1.15 (dash-

dotted), and 0A = 1.50 (solid). In Fig. 1.a., we present solution for the modulus 

of the Higgs field, ( )g r , and the vector gauge, ( )a r . In this calculation, we set 

2 1sx = −  and 1n ve  == = = . These solutions obey the standard boundary 

condition for topological vortices. As we increase the value of 0A , we get a 

steeper plot. This is due to the fact that the derivative of those functions is 

proportional to 0A . Numerical solution to the neutral scalar field is presented in 
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Fig.1.b. As we can see, it approaches constant value as we have 0 2A → . This 

result can be traced back to eq. (32b), that if 
2 4

0 / 4A v → then '( ) 0N r → . 

However, we cannot present the numerical solution for constant neutral scalar 

field due to the limitation of the numerical method that we use. 

We also vary the vacuum expectation value of the Higgs field, namely v = 0.80 

(dotted), v = 1.00 (dash-dotted), and v = 1.20 (solid), with 2 1sx = −  and 

0 1e n A == == . As we can see from Fig.2, the numerical results are pretty 

much similar to the results that we have obtained for several value of 0A . 

However, the solution for neutral scalar field shows the opposite trend as we 

increase the value of v . For the greater value of v , this solution deviates further 

from the constant solution. This is due to the same reason as the one that we have 

seen in the previous calculation. As the value of 
4 0.25v → , while the other 

constants are unity, the solution for neutral scalar field will approach a constant 

solution. 

 
(a) (b) 

 
                                (c)                                                             (d) 

Figure 1 (a) Numerical solution for several values of 0A to the Higgs ( )g r

(increasing), vector gauge field ( )a r (decreasing), and (b) the neutral scalar field 
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( )N r from the BPS equations (32). In (c) the corresponding magnetic field is 

obtained from (26), and in (d) the energy density is presented. 

From the solution of eq. (32), we may obtain two observables namely the 

magnetic field and energy density. There is no particular difference for the 

numerical solution of the magnetic field and energy density, whether we vary the 

constant value of 0A or v . However, the energy density in this solution is quite 

different from the one obtained before by Bazeia et al. [7] and Andreade et al. 

[9], that in near origin its value approaches zero. This ring-like vortices is also 

obtained before by Andreade et al. in [10]. Nevertheless, the solution that we 

have obtained here is still different, it has no electric field. Even so, these vortices 

still have magnetic charge. From (3), we may calculate the zeroth component to 

obtain 

 

3
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e

v
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Using eq. (24a), we may integrate the charge density (35) for all space to obtain 
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The above result can be interpreted as the magnetic charge of this MCSH vortices. 

 
(a)                                                               (b) 
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                               (c)                                                              (d) 

Figure 2 (a) Numerical solution for several values of v  to the Higgs ( )g r

(increasing), vector gauge field ( )a r (decreasing), and (b) the neutral scalar field 

( )N r from the BPS equations (32). In (c) the corresponding magnetic field is 

obtained from (26), and in (d) the energy density is presented. 

4 Conclusion 

We have presented that topological vortex solution to the MCSH model described 

with Lagrangian density (1) exist. In our derivation, we hold the condition that 

all the involved fields are independent to one another. This leads to a conclusion 

that the value of the scalar gauge field is constant, thus the vortex solution that 

we have derived does not have electric field. However, the magnetic field for this 

model can be calculated using (26). From the local (1)U conserved current, we 

may calculate the magnetic charge and we obtain that its value is proportional to 

the magnetic flux. 

We also find that the potential depends to the generalized coupling functions 

,(| | )w N and ,(| | )h N . For numerical analysis, we introduce the explicit form 

for the generalized coupling functions such that they satisfy the positive definite 

condition. The numerical solution for ( )g r and ( )a r shows the usual behavior 

for the topological vortices. We do the numerical calculation for several values 

of 0A and v , with the other non-varying constants are set to be unity. We obtain 

that the solution for neutral scalar field approaches constant solution as 
2 4

0 / 4A v → . In this paper, we do not consider the solution for constant neutral 

scalar field since the numerical method that we use becomes ineffective. 

The energy density for this model is rather different from the previous studies 

done by Bazeia et al. [7] and Andreade et al. in Ref. [9], that the energy density 

of this solution approaches zero near the origin. This ring-like solution was also 
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obtained before by Andreade et al. in [10]. However, the vortex solution that they 

have obtained is different from our solution in a sense that their approach involves 

the identification between scalar gauge field and the Higgs field. 
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