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Abstract. Vortices are topological defects that exist in the planar dimension. In
this paper, we present first-order formalism to Maxwell-Chern-Simons-Higgs
model with general coupling functions using the BPS Lagrangian method. We
obtain finite an energy solution with the potential that depends on the generalized

functions W(| @], N) and h(| #|, N) . We introduce some particular generalized
functions and present the numerical solution to the obtained BPS equations. We
find that the vortex solution of our model does not have electric field and the
energy density forms a ring-like structure. Using the conserved local U (1)

current, we obtain that the charge density of this model is localized and the charge
itself is proportional to the magnetic flux.

Keywords: BPS equations; BPS Lagrangian; Maxwell-Chern-Simons-Higgs;
topological defects; vortex.

1 Introduction

Topological defects have become an interesting topic of discussion in recent
years. This type of solutions which arise from a nonlinear model can be
interpreted as a type of particles that is different from the usual elementary
particles in the Standard Model. They have distinct topological property from
their vacuum such that there are no physical processes with finite amount of
energy which can deform these solutions into their vacuum. One particular kind
of topological defects in planar space is known as vortices, Manton et al. and
Weinberg [1, 2]. There exist two kind of vortices, nhamely global and gauged
vortices, each corresponds to the global and local U (1) transformation

respectively. The generalization of global vortices in 3+1 dimensional spacetime
have their application in cosmology. Kibble mechanism explains how the
formation of cosmic strings may occurs in the early universe during the course of
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symmetry-breaking cosmological phase transitions, Weinberg and Kibble [2, 3].
Gauged vortices also have their own interesting application in condensed matter
physics, mainly in the superconductor of the second group that has been studied
by Abrikosov in [4].

The standard kinetic term of the gauge field in gauged vortices is the Maxwell
Lagrangian. However, in the odd-dimensional spacetime, there exist another
possible kinetic term for the gauge field that is Lorentz invariant, local, and
remain gauge invariant up to its boundary term, that is the Chern-Simons term,
Dunne [5]. In planar dimension, coupling between Chern-Simons term and matter
field give rise into a new kind of particles which have distinct statistics from the
ordinary bosons and fermions. It was studied by Wilczek in [6] and is called
anyons.

Mathematically, it is possible to consider a model in which the kinetic terms of
the gauge field are described both by the Maxwell and Chern-Simons term. In
one of the earliest studies, Lee et al. [7] shows that coupling between Maxwell-
Chern-Simons term and the Higgs field (MCSH) give rise into electrically
charged vortices. The first differential formulation in this study leads into a
conclusion that the self-dual solution is static and there is an identification
between the scalar gauge field and the neutral scalar field, removing the gauge
invariant problem. This study is generalized by Bazeia et al. in [7] by adding
generalized coupling functions. In this generalization, coupling functions
between Maxwell and the kinetic term of neutral scalar field remain identical,
which makes the scalar gauge and neutral scalar field remain identical. Different
approach was done by Torres in Ref. [8] by introducing anomalous magnetic
moment to the coupling between gauge and Higgs field. This addition makes the
second order dynamical equation for the gauge field to be satisfied by first order
differential equation. This enables the temporal gauge field to be written in terms
of the Higgs field, thus removing the gauge invariant problem. Generalization of
this model was done in a quite similar manner as in the previous model* was done
by Andreade et al. [9]. Recent study by Andreade et al. [10] shows that vortex
solution may exist in the generalized MCSH model even with no neutral scalar
field and minimal coupling between gauge and the Higgs field. Approach to this
model was done by considering the stressless condition. In this study, first-order
differential equation is introduced in the analysis such that is satisfy stressless
condition and the equation of motion. The consequence of this is that the equation
which relates scalar gauge field to the Higgs field is obtained.

We learn that in the previous studies, the identification between temporal gauge
field and a scalar field is need to be done to avoid violating gauge invariant

1 The one with neutral scalar field.
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condition. In this paper, we attempt to obtain vortex solution with all the involved
fields independent to one another. The method that we will use to obtain the first-
order formalism is the BPS Lagrangian method introduced by Ardian in [11].
This paper consists of four sections. In Sec. I, we introduce the model and apply
the radially symmetric ansatz into it. In Sec. Ill, we implement the BPS
Lagrangian method into the model and analyze the obtained equations
numerically. Finally, we conclude this study in Sec. IV where we give our final
comment and discuss the possibility for further research.

2 Generalized Maxwell-Chern-Simons-Higgs Model

In this paper, we consider the most general version of the model with the
Lagrangian density

h N v Ko
L :—% F,qu‘L _ZO! pA;tFV,D +W(|¢|’ N)l D/~l¢ |2

@)
+M6#N6”N -V(¢|,N),

where h(|@¢|,N), w(|¢|,N), and G(|#|,N) are the generalized coupling
functions that satisfy positive-definite and dimensionless condition, V(| ¢|, N)
is a general potential with non-negative value, F,, =0, A, —0,A, is the abelian

gauge curvature tensor, and D, ¢ =0 ¢ +ieA ¢ describes the minimal coupling
between Higgs and the gauge field.

The equation of motions for the fields in this model are given by the Euler-
Lagrange equations. For the gauge field, we have
0,(hF*)+3" =xF", 2

where

3" —iew(¢D"g-$D'9), ®)
is the U (1) conserved current and
F"=(@/ Z)C)VPGFPG, (@)

is the dual of gauge curvature tensor. From eq. (2), one can observe that the
temporal gauge, A, =0, cannot be used since it will lead to the trivial solution.

The remaining equation of motions to Lagrangian (1) can be written as
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1
Dﬂ(WD”¢)+§a$h(FﬂF” ~9,No"N)-a,w| D, ¢[ )
+0,V =0,

1
6ﬂ(GéﬂN)+E(aNh FF*“-0,G 0,No"N +20,w|D,g¢F) ©

+o,V =0,

We may also calculate the energy-momentum tensor for the latter calculational
purpose.

v r/ v 1 v (e}
T =h(I¢I,N)(F’pr T2 e Fr )+77”VV(|¢|,N)

7
+G(|¢|,N)(8”N8”N—%n”vﬁpNépN) , "

We are interested to the radially-symmetric static solution of the form
#(r,0)=vg(re™; N=N(r); A=A(r), (8a)
A(r,H):—e%(a(r)—n), (8b)

withv being the vacuum expectation value of Higgs field and n=11,+2,...is
the winding number. Substituting ansatz (8) into the Lagrangian density (1), we

obtain
h,. h(a(®Y o ( . .., &g
L, =—A Ry ek G/
i =5 Ao(r) 2( erj vw(g(r)+

r2
SN (A1) - A) ©
+e VA gPwW-V.

We may also take the 00-component of the energy-momentum tensor and write
it in terms of the defined ansatz so that the energy density of this model is
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12 242
p= g[A'o(r)2 - :;rZJ+v2W(g '(r)* + arg +e2A§gzj
G (10)
+EN '(r)? +V,

where we have w=w(g,N), h=h(g,N), V=V (g,N), and the primed
function denotes its derivative with respectto I .

3 BPS Equations Formalism

3.1 BPS Lagrangian Method

It has been shown in [11] that the BPS Lagrangian method is sufficient to derive
the BPS equations for vortices in the standard and generalized Maxwell-Higgs
and Born-Infeld-Higgs models. Furthermore, the method has been used for the
case of Skyrme model [12]. In the BPS Lagrangian method, we basically trying
to rewrite the original Lagrangian density into quadratic terms that consist of all
first-derivative of the fields by subtracting it with a BPS Lagranigan density,

Lgps - The Bogomolnyi’s equations are obtained when all these quadratic terms

are equal to zero, L — L, =0. The cost for introducing this BPS Lagrangian

density is additional constraint equations, which are the Euler-Lagrange
equations of the BPS Lagrangian density, that must be considered in solving the
Bogomolnyi’s equations. As an example, a Lagrangian density of a model with
k -scalar fields can be written down as,

k .
=D (0,8 — (¢ 8":0,8':%) (11)
i=1
with  j=1...,i-1i+1...,k. Setting L —Lgs =0, the Bogomolnyi’s
equations are given by
0,4 =1'(¢....0";0,4":%) . (12)

For the most of well-known cases, the BPS Lagrangian density consists of only
boundary terms, or in another word its Euler-Lagrange equations are trivial [11].
In general, the BPS Lagrangian density can also contain non-boundary terms such
as shown in [13] which results in BPS vortices with non-zero stress tensor in the



14 Laurenzius Yudha Prasetya Tama, et al.

generalized Maxwell-Higgs and Born-Infeld-Higgs models. In this article, we
consider a BPS Lagrangian density only with non-boundary terms of the form?,

LBPS X T g (r) —a (I’) -—2A o(r) (13)

where X, = X,(g,a, A,,N) with 1=0,1,2,3. This BPS Lagrangian is not the

most BPS Lagrangian but it is be sufficient for our purpose in this article, as it
will be clear in the next sections.

3.2 BPS Equations for All Effective Fields

In the BPS limit, we calculate L — L, =0 and solve the equation for each field
one by one. We obtain,

g'(r)= 2rv W (14a)

a'(r)= (2eX KA, (14b)
Con zc(n—a)—ZeX3

A'(r)= St : (14c)

N (r)_E (14d)

and a constraint equation. This constrain function can be written in the form of a
polynomial inr. Since the coefficients of this polynomial do not containr
explicitly, this constraint equation will be satisfied if each of the coefficient is
zero,

_ 2
X, = —(A“K8+x2)— AV QW+, (15a)
2eX, +(a—n)x)’ 2 2
8v’a’g’w=— (2X, e(zh )x) +4é ixw (15b)

Besides the above constraint equation, there are other conditions that must be
satisfied by the BPS Lagrangian. From the Euler-Lagrange equations of the BPS

2 We follow suggestions in [13] to determine explicit radial coordinate dependent for
each term in the BPS Lagrangian density.
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Lagrangian, we may substitute the BPS equations (14) into these equations. We
then write the equations in polynomial of I and setting all the coefficients to zero.

From the coefficient of r°-term, we find
X, =X,(9,A,N), (16a)
X, =aY,(9,A,N)+Z(9,A,,N), (1=13,4). (16b)

Substituting the above results into the coefficient for r'-term, we write the
obtained result as a polynomial in a(r). From a’r*-term, we obtain

 A2n2\,2 2
1 (Shza(v Aeivig’w) on

Y= 4eh(2eX, — Ax) og o9 (A —2eX,) ] (17a)

2.2
v, - Ao AW K
Ax—2eX, 2e

B 1 , OV - Aje’vig’w)  ch _ 2
Y, = XA [8h + 2 (Ax—2eX,) ] . (18)

, (17b)

oN oN

We consider a simple case where X, = 0 such that

X, =2+ 2 [V - Revigw), @9

where sx, = +1denotes the choice of signature in the solutions of X, .

If we hold the dependency of A, with respect to I, then the coefficient for a’r'

-term requires x =0. Therefore, we must consider A,(r) = A,, where Ajis a
constant. This condition and the the Bogomolnyi’s equation (14¢) imply

nic
Z,=—, 20
3= o8 (20)
2.2.,2 2
v :W(Zezvzgzwhﬂcz), (1)
K

with a condition sgn(e) xsgn(A,) xsgn(sx,) xsgn(x) = +1. Substituting those
functions into all the constrain equations and the equation (15b), we find the
coefficient of a’gives
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Aozfz[zvzgz[a(hw)j bt (8(92hW)J J:W. (22)
. G oN gw a9

We find that the only possible solution is Z, = Z, = 0 and the solution to (22) is

ZVZW(a%egZhw)]
G

oN
= R (23)
2
cigtut [ OUAea W)
a9
2 2
where K292W2 > [wj . The corresponding Bogomolnyi’s equations
g
are
1 2,2
w:sxﬂezvz A‘)—ngw, (24a)
r K
, e’ a o(g*hw
§(r) =50, 25 2 UG (24)
K° rw og

K222 _(a(p\)egzhw)j

P a9
N(F) = 5%, |5 — . 24
(1) =sx, AZe? rw 2 d(g*hw) (24¢)

oN
In this BPS limit, one may show that the energy density (10) becomes

2 2 2,2 2
, | K sx,2v° [A,e” d(ag“wh)
Paps = —SX, A€ Aozez B+ Zr 2 dr , (25)
With B being the two-dimensional magnetic field that is defined as
1 da
B(r)=———. 26
) er dr (20)

To this model, we apply the standard boundary condition for topological vortices
g(0)=0, a(@)=n, N()=N,, (27a)
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g(0)=1, a(0)=0, N(x)=N._. (27b)

Integrating the BPS energy density (25) with respect to the boundary condition
(27) throughout all space, we obtain

2.2
A (28)

eZ

Eges =27 _[ Pgps! dr =—8X,27n

The negative sign indicates that positive SX, is related to negative winding
number, and vice versa.

3.3 Numerical Calculation
For the following calculation, we do the rescaling

r—>£, N—>£N, AO—>EA), v Sy, (29)
K e e e
In this model, there are three generalized coupling functions and a potential that
are free to choose. Nevertheless, equation (21) and the positive definite condition
of (23) reduce the number of free parameters to two. From this, we define the
constraint functions to be

\/51_ 2y2
w(g,N)= - ( Zg) —, (30a)
J3N2+3+3g7-3g*+g
h(g.N) = 1 \/3N2+3+3gz—39“+g6
! 6V2 92(1_ g2)2 (30b)

><(\/3N2 +3+39°-3g*+g° —\/5),

3 N

G(g,N)= )
2v* g%(1-g%)?3N2 +3+39% —3g* +¢°

(30c)

One may check that the above definition satisfy the positive-definite condition.
With this coupling functions, the potential becomes

V(g) =’;—2Aév292(1—92)2, (31)

and the BPS equations,
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1 SXZ & ag
=22 |02 32
9 2 \v'or (322)
2 2 2\2
N'= ZSXZ 1- A\)A ag (1_9 ) , (32b)
\/E 4v rN

' 201 2y2
¥ sxov 3 9 0-0) . (320)
r \/3N2+3+3gz—3g4+g‘3

From eg. (25), the energy density of this model can be written as below.

3 a

4v* r2 [3N% +3+3g2 —3g* +¢°

4
Paps =’;—22v2A§gz(1—gz)2[1+ (33)

The behavior of the fields near origin may give better understanding to the
boundary condition for numerical analysis. By writing the solution to equations
(32) as power series, we obtain

g(r=0)=g,r™, (34a)
95772 2n
N(r=0)=N,——=——=r"", (34b)
" 2Ny,
2
a(r=0)=n- 9o'ls P2, (34c)

ny3(NZ +1)7,

From the above result, we may implement the boundary condition for neutral
scalar field near its originas N'(0)=0.

For the numerical analysis, we present the solution for several values of the
constant temporal gauge field, namely Aj= 0.80 (dotted), A,= 1.15 (dash-

dotted), and A, = 1.50 (solid). In Fig. 1.a., we present solution for the modulus
of the Higgs field, g(r), and the vector gauge, a(r). In this calculation, we set
sX, =—1 and e=x=n=v=1. These solutions obey the standard boundary
condition for topological vortices. As we increase the value of A;, we get a

steeper plot. This is due to the fact that the derivative of those functions is
proportional to A, . Numerical solution to the neutral scalar field is presented in
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Fig.1.b. As we can see, it approaches constant value as we have A, — 2. This

result can be traced back to eq. (32b), that if A’ /v* —4then N'(r) —>0.

However, we cannot present the numerical solution for constant neutral scalar
field due to the limitation of the numerical method that we use.

We also vary the vacuum expectation value of the Higgs field, namely v = 0.80
(dotted), v= 1.00 (dash-dotted), and v= 1.20 (solid), with sx, =—1 and
e=x=n=A,=1. As we can see from Fig.2, the numerical results are pretty

much similar to the results that we have obtained for several value of A,.

However, the solution for neutral scalar field shows the opposite trend as we
increase the value of v. For the greater value of v, this solution deviates further
from the constant solution. This is due to the same reason as the one that we have

seen in the previous calculation. As the value of v* — 0.25, while the other
constants are unity, the solution for neutral scalar field will approach a constant

solution.
10
v s -
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. \d ,li'-‘_- e L
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Figure 1 (a) Numerical solution for several values of A, to the Higgs g(l’)

(increasing), vector gauge field a(r) (decreasing), and (b) the neutral scalar field
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N (r) from the BPS equations (32). In (c) the corresponding magnetic field is
obtained from (26), and in (d) the energy density is presented.

From the solution of eq. (32), we may obtain two observables namely the
magnetic field and energy density. There is no particular difference for the
numerical solution of the magnetic field and energy density, whether we vary the

constant value of Ajor v. However, the energy density in this solution is quite

different from the one obtained before by Bazeia et al. [7] and Andreade et al.
[9], that in near origin its value approaches zero. This ring-like vortices is also
obtained before by Andreade et al. in [10]. Nevertheless, the solution that we
have obtained here is still different, it has no electric field. Even so, these vortices
still have magnetic charge. From (3), we may calculate the zeroth component to
obtain

_ o_’f3 2 2
o=J —FZV AW (35)

Using eq. (24a), we may integrate the charge density (35) for all space to obtain

Q=27TJ.0'I’ dr:—sxzx—327zn A . (36)
e \/E

The above result can be interpreted as the magnetic charge of this MCSH vortices.
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Figure 2 (a) Numerical solution for several values of v to the Higgs g(r)
(increasing), vector gauge field a(r) (decreasing), and (b) the neutral scalar field

N (r) from the BPS equations (32). In (c) the corresponding magnetic field is
obtained from (26), and in (d) the energy density is presented.

4 Conclusion

We have presented that topological vortex solution to the MCSH model described
with Lagrangian density (1) exist. In our derivation, we hold the condition that
all the involved fields are independent to one another. This leads to a conclusion
that the value of the scalar gauge field is constant, thus the vortex solution that
we have derived does not have electric field. However, the magnetic field for this
model can be calculated using (26). From the local U (1) conserved current, we
may calculate the magnetic charge and we obtain that its value is proportional to
the magnetic flux.

We also find that the potential depends to the generalized coupling functions
wW(|#|,N)and h(|¢|, N) . For numerical analysis, we introduce the explicit form

for the generalized coupling functions such that they satisfy the positive definite
condition. The numerical solution for g(r)and a(r) shows the usual behavior
for the topological vortices. We do the numerical calculation for several values
of A,and v, with the other non-varying constants are set to be unity. We obtain
that the solution for neutral scalar field approaches constant solution as
Aé /v* = 4. In this paper, we do not consider the solution for constant neutral
scalar field since the numerical method that we use becomes ineffective.

The energy density for this model is rather different from the previous studies
done by Bazeia et al. [7] and Andreade et al. in Ref. [9], that the energy density
of this solution approaches zero near the origin. This ring-like solution was also
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obtained before by Andreade et al. in [10]. However, the vortex solution that they
have obtained is different from our solution in a sense that their approach involves
the identification between scalar gauge field and the Higgs field.
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