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Abstract. The utilization of biomass as a renewable energy source is becoming 

increasingly important to reduce dependence on fossil fuels and decrease carbon 

emissions. However, the efficient distribution of biomass in the co-firing system 

at the Adipala Steam Power Plant (PLTU) faces significant challenges related to 

high logistics costs. This research aims to optimize the distribution costs of 

biomass in the co-firing system at PLTU Adipala using Linear Programming (LP) 

methods. The main objective of this study is to determine the optimal amount of 

biomass needed to meet the energy requirements of the power plant with efficient 

distribution costs, as well as to identify supply chain strategies that can enhance 

cost efficiency. The method employed is a Linear Programming optimization 

model that considers factors such as transportation costs, supply capacity, and 

biomass needs according to the primary energy mix quota. The research findings 

indicate that the application of LP can reduce logistics costs and improve the 

efficiency of biomass distribution. These findings make a significant contribution 

to enhancing the efficiency of biomass supply chain management at PLTU 

Adipala and can serve as a reference for the development of renewable energy 

policies in Indonesia. In conclusion, the application of LP in biomass supply chain 

management can provide efficient and sustainable solutions, as well as promote 

the reduction of carbon emissions in the energy sector. 

Keywords: Biomass, Co-firing, Linear Programming, Cost Efficiency, Adipala Power 

Plant. 

1 Introduction 

The energy problem in Indonesia is becoming increasingly urgent as energy 
demand rises and dependence on fossil fuels decreases. High reliance on fossil 
energy has the potential to harm the environment, increase carbon emissions, and 
accelerate global climate change. Therefore, the transition to renewable energy is 
a crucial step in ensuring sustainable energy resilience. Biomass, as a renewable 
energy source, has significant potential in Indonesia. The country is rich in 
biomass resources from the agricultural and forestry sectors, such as palm oil 
waste, rice husks, and sawdust (Renewable Energy Agency, 2021), which can be 
utilized to support energy resilience and reduce carbon emissions. 
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However, despite the vast potential of biomass, its utilization in the energy sector, 
particularly in Steam Power Plants (PLTU), remains limited. One of the main 
factors hindering the optimization of biomass utilization is the challenges in 
managing an efficient biomass supply chain. High logistics costs, which include 
the collection, transportation, and storage of biomass, often serve as a major 
barrier to the distribution of biomass to power plants. Parikha (2004) reported 
that approximately 40% to 60% of the biomass available in Indonesia is not 
maximally utilized, leading to a waste of resources that could serve as alternative 
fuel. 

As a solution to reduce dependence on fossil fuels, co-firing technology, which 
combines biomass with coal in the combustion process at power plants, has been 
introduced. This technology not only helps reduce carbon emissions but also 
accelerates the transition to a more sustainable energy system. In Indonesia, co-
firing technology is being implemented in several power plants, including the 
Adipala Power Plant, aiming to enhance the contribution of renewable energy 
and reduce carbon emissions (Dreves, 2022). Although this technology is 
promising, its implementation requires efficient biomass distribution to support 
the operational sustainability of the power plant. 

However, beyond the challenges in combustion technology, a primary constraint 
in the application of co-firing lies in the management of the biomass supply chain, 
which requires careful and efficient planning. Price variability of biomass, limited 
transportation capacity, and inadequate infrastructure in some regions further 
exacerbate this issue. Therefore, a more systematic approach is needed to 
optimize the biomass supply chain so that biomass distribution to power plants 
can be conducted at efficient costs and improve operational smoothness. 

Several studies have been conducted to enhance the cost efficiency of co-firing 
operations, one of which is the optimization of the biomass supply chain carried 
out by Nunes and Silva (2023), focusing on the logistics of collecting residual 
biomass. Other research by Atashbar et al. (2016), Sun and Fan (2020), Lo et al. 
(2021), and Ba et al. (2016) also emphasizes the importance of a holistic 
understanding of the supply chain in the residual biomass sector. To deepen the 
study of improving efficiency in biomass logistics, this research is based on the 
model by Rentizelas et al. (2009), which uses Linear Programming (LP) to 
optimize cost functions that include biomass logistics activities between storage 
locations in agricultural areas and central power plants, as well as construction 
and expansion costs of storage facilities. Other studies have also utilized linear 
programming to schedule biomass deliveries in the supply chain, both for 
centralized power plants and decentralized heat and power plants. 

Therefore, this study aims to optimize the distribution costs of biomass in the co-
firing system at the Adipala Power Plant using Linear Programming (LP) 
methods. Through LP, this research will identify optimal solutions in managing 
the biomass supply chain that can minimize operational costs and enhance 
biomass distribution efficiency. Overall, this study aims to determine the optimal 
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amount of biomass needed to meet the energy requirements of the Adipala Power 
Plant with the most efficient distribution costs, as well as to identify supply chain 
strategies that can improve cost efficiency and support renewable energy 
sustainability. The benefits of this research will not only provide significant 
contributions to biomass supply chain management in Indonesia but also serve as 
a reference for the development of future renewable energy policies and support 
the achievement of national carbon emission reduction targets. 

2 Optimization Model 

2.1 Objective Function 

This research focuses on optimizing the supply chain of residual biomass with 
the aim of minimizing logistics costs while enhancing the efficiency and 
sustainability of the supply chain. The study employs an Operations Research-
based approach, such as linear programming, to evaluate and optimize various 
scenarios of collection, transportation, storage, and processing of residual 
biomass. Below is the cost modeling related to the logistics of residual biomass 
from the study by Nunes and Silva (2023): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conseptual Model 

 

• Nunes and Silva (2023) developed a model that can be divided into five 
stages as follows: 
1. Definition of cost parameters 
2. Development of detailed criteria 
3. Building a simple model and adjusting it to reality and adaptability 

approaches 
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4. Variations related to specific parameters in the residual biomass 
calculation model through variable weighting 

5. Optimization 

2.2 Cost Parameters and Detailed Criteria 

2.2.1 Cost Function 

Given the focus of this research on minimizing logistics costs, this study develops 
a biomass logistics cost model based on Nunes and Silva (2023), following the 
availability of data and existing business processes of the company. The cost 
components consist of two main components: the cost of purchasing biomass 
material and logistics costs. The consideration of including the cost of purchasing 
biomass material in the research model is to observe how dynamics change with 
variations in raw material prices or logistics/shipping. Meanwhile, logistics costs 
include loading costs, vehicle fuel costs, labor costs for delivery, vehicle costs, 
and other shipping costs. 

The cost of purchasing biomass material is calculated by multiplying the unit 
price by the quantity. The equation is as follows: 

𝐶𝑥𝑖 = 𝑥𝑖 ∗  𝑃𝑥𝑖        (1) 

Where: 

𝐶𝑥𝑖  : Total cost of purchasing biomass material from source 𝑖 (Rp). 

𝑥𝑖  : Quantity of biomass from source 𝑖 (ton) 

𝑃𝑥𝑖  : Price of biomass (Rp/ton). 

Meanwhile, the loading cost of biomass onto vehicles is calculated using a labor 
cost approach. First, the number of laborers needed is estimated using a labor 
load approach that describes labor productivity.  

The equation is as follows: 

𝑁𝐿𝑖 =  𝑥𝑖/ 𝐵𝐿𝑖         (2) 

Where: 

𝑁𝐿𝑖  : Number of loading laborers (people) 

𝐵𝐿𝑖  : Load per laborer (tons/person) 

Second, the number of laborers is multiplied by the wage to obtain the total 
loading cost at each supplier, using the formula: 

𝐶𝐿𝑖 =  𝑁𝐿𝑖 ∗ 𝑊𝐿𝑖        (3) 

Where: 

𝐶𝐿𝑖  : Total loading cost from source 𝑖 (Rp). 
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𝑊𝐿𝑖 : Wage per laborer (Rp/person). 

Third, the loading price is calculated by dividing the total loading cost by the 
amount of biomass provided by the supplier using the following formula: 

𝑃𝐿𝑖 =  𝐶𝐿𝑖/𝑥𝑖        (4) 

Where: 

𝑃𝐿𝑖  : Loading price(Rp/ton) 

The vehicle fuel cost is calculated by considering the distance from the supplier's 
location to the power plant, fuel consumption and price, and vehicle carrying 
capacity. First, this study calculates the total fuel cost per trip using the following 
formula: 

𝐶𝐹𝑖 =  2 ∗ 𝐷𝐹𝑖 ∗ 𝐹𝑖 ∗ 𝑃𝐹𝐿𝑖       (5) 

Where: 

𝐶𝐹𝑖 : Total fuel cost per trip (Rp) 

𝐷𝐹𝑖 : Distance from source to power plant (km) 

𝐹𝑖     : Total fuel required (liter/km) 

𝑃𝐹𝐿𝑖  : Fuel price (Rp/liter) 

Second, following the study by Nunes and Silva (2023), this study considers the 
use of vehicle carrying capacity by adding a beta (β) parameter that describes 
vehicle utilization. The formula is as follows: 

𝑃𝐹𝑖 =  𝐶𝐹𝑖/ 𝛽 ∗  𝐶𝑎𝑝𝑖        (6) 

Where: 

𝑃𝐹𝑖 : Fuel price per biomass (Rp/ton). 

𝐶𝑎𝑝𝑖 : Maximum vehicle capacity (ton). 

𝛽  : Vehicle carrying capacity parameter (0 < 𝛽     ≤ 1) 

The total labor cost for transportation is then used to calculate the labor cost per 
unit of biomass, taking into account the vehicle carrying capacity, using the 
formula: 

𝑃𝑇𝑖 =  𝐶𝑇𝑖/ (𝛽 ∗  𝐶𝑎𝑝𝑖)         (7) 

Where:  

𝑃𝑇𝑖           : Transportation labor cost per biomass (Rp/ton). 

𝛽     : Vehicle carrying capacity parameter (0 < 𝛽  ≤ 1). 

𝐶𝑎𝑝𝑖          : Maximum vehicle capacity (ton). 
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2.2.2 Constraint Function 

To ensure the optimal amount of biomass with efficient costs in the company's 
business process, this study considers several constraint functions as follows: 

Supplies from suppliers meets the minimum quota demand of the power plant. 
The biomass demand from the power plant from suppliers can be in the form of 
a quota, which in this study is described by the alpha (α) parameter. The larger 
indicates a greater need for the power plant to be supplied by suppliers, with the 
restriction 0 < α ≤ 1. The parameter  α =1  indicates that all biomass needs must 
be supplied by suppliers.  

 

The supply-demand constraint can be written as follows: 

𝑑𝐷 ≤  ∑ 𝑥1
𝑛
𝑖=1 ≤ 𝐷         (8) 

Where: 

𝐷   : Biomass demand of the power plant (ton). 

𝑥𝑖  : Amount of biomass from supplier 𝑖 (ton). 

𝑑  : Quota/target biomass from suppliers (0 < 𝑑 ≤ 1). 

The amount of biomass delivered does not exceed the supply capacity of biomass 
at each supplier. In this case, not all supplies from suppliers may be delivered to 
the power plant due to high costs. This means that the optimal amount of biomass 
delivered is at most equal to the biomass supply per supplier. The constraint 
function is: 

𝑥𝑖 ≤ 𝑔𝑖          (9) 

Where: 

𝑥𝑖      :  Amount of biomass delivered from supplier 𝑖 (ton). 

𝑔𝑖         : Biomass supply from supplier 𝑖 (ton) 

Non-negativity or the amount of biomass delivered cannot be negative: 

𝑥𝑖 ≥ 0          (10) 

2.2.3 Cost Minimization Function 

Based on the cost functions and constraints above, the cost minimization model 
in this study can be written as follows: 

𝑀𝑖𝑛𝑥𝑖 ∑ 𝑥𝑖
𝑛
𝑖=1 ∗  [𝑃𝑥𝑖 + 𝑃𝐿𝑖 + 𝑃𝑜𝑖 + (𝑃𝐹𝑖 +  𝑃𝑇𝑖 +  𝑃𝑅𝑖)]    (11) 

𝑜𝑟 

𝑀𝑖𝑛𝑥𝑖 ∑ 𝑥𝑖
𝑛
𝑖=1 ∗  [𝑃𝑥𝑖 +  𝑃𝐿𝑖 + 𝑃𝑜𝑖 + (

𝐶𝐹𝑖+ 𝐶𝑇𝑖+𝐶𝑅𝑖

(𝛽∗ 𝐶𝑎𝑝𝑖)
)]      (12) 
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with constraints: 

𝐷 ≤  ∑ 𝑥1
𝑛
𝑖=1 ≤ 𝐷         (13) 

𝑥𝑖 ≤ 𝑔𝑖          (13) 

𝑥𝑖 ≥ 0           (14) 

Where: 

 𝑥𝑖    :  Amount of biomass delivered from supplier 𝑖 (ton). 

𝑃𝐿𝑖 : Price of biomass material from supplier 𝑖 (Rp/ton). 

𝑃𝑜𝑖 : Loading price of biomass (Rp/ton). 

𝑃𝐹𝑖 : Fuel price per biomass (Rp/ton). 

𝑃𝑇𝑖 : Labor cost per biomass (Rp/ton). 

𝑃𝑅𝑖 : Vehicle rental price per biomass (Rp/ton). 

𝐶𝐹𝑖 : Total fuel cost per trip (Rp). 

𝐶𝑇𝑖 : Total labor cost per trip (Rp). 

𝐶𝑅𝑖 : Total vehicle rental cost per trip (Rp). 

𝐶𝑎𝑝𝑖: Maximum vehicle carrying capacity (ton). 

𝛽 : Vehicle carrying capacity parameter (0 < 𝛽  ≤ 1). 

𝐷 : Biomass demand of PLTU Adipala (ton). 

𝛼 : Parameter share suplai biomassa untuk PLTU Adipala 

𝑔𝑖 : Biomass supply per supplier 𝑖 (ton) 

𝑖 : Supplier index ( 𝑖 = 1,2,...,8) 

 

To obtain the optimal solution from the cost minimization model above, this 
study uses linear optimization methods. Linear optimization is a mathematical 
technique used to find the optimal solution to a problem with linear constraints. 
This study uses GLPK (GNU Linear Programming Kit), a software library 
designed to solve linear and integer linear optimization problems. GLPK supports 
problem formulation using standard linear optimization formats and has a 
programming interface that allows integration with various languages. 
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3 Result and Discussion 

Data Overview and Division 
The data in this research is processed from data presented by PT PLN and PLTU 

Adipala with the following details: 

 

 

 

 

 

 

 

 
 

 
 

 

 

Figure 2. Overview of Biomass Inventory, Demand, and Supplier Deliveries 

period 2022–2024 
 

Figure 2 displays the trend of total biomass inventory, biomass demand, and 
biomass deliveries from suppliers each month during the period from 2022 to 
2024. In the biomass inventory graph, it can be seen that the inventory amount 
was relatively low and stable in 2022, then began to experience a significant 
increase from early 2023, peaking at the end of 2024 with a value approaching 
10,000 tons. However, in the last month at the beginning of 2025, the inventory 
dropped drastically to nearly zero. 

In line with the inventory, the biomass demand graph also shows a similar pattern. 
Biomass demand remained relatively stable and low throughout 2022, then 
surged sharply from early 2023. Demand peaked at the end of 2024 at around 
10,000 tons, before dropping sharply at the beginning of 2025. This trend 
indicates a significant increase in biomass needs during the 2023 to 2024 period, 
which aligns with the rising inventory. 

In the biomass delivery graph, the volume delivery pattern also follows a similar 
trend to inventory and demand. Biomass deliveries, which were relatively small 
and stable in 2022, began to increase sharply from early 2023, then fluctuated but 
remained at a higher range, peaking at the end of 2024 close to 10,000 tons. A 
sharp decline also occurred at the beginning of 2025. Overall, the graph shows a 
strong synergy between inventory, demand, and biomass deliveries during the 
same period. 
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Figure 3. Average Biomass Transaction Cost per Supplier, Period 2022- 2024 

 
Figure 3 displays the average price of biomass material per supplier from 2022 to 
2024 in millions of rupiah. From this horizontal bar graph, it can be seen that the 
supplier Ngelosari has the highest average price, approximately 15.65 million 
rupiah. This indicates that the biomass supplied by Ngelosari has a relatively 
higher transaction value compared to other suppliers. 

Next, the suppliers Pagelaran and Alas Malang occupy the following positions 
with average prices of approximately 11.78 million rupiah and 8.34 million 
rupiah, respectively. The biomass prices from these two suppliers are also 
relatively high, indicating a significant price variation among the main suppliers. 
Meanwhile, suppliers Jatiroto, Jatijajar1, and Purwasaba have lower average 
prices, approximately 6.77 million rupiah, 3.21 million rupiah, and 2.30 million 
rupiah, respectively. 

On the other hand, some suppliers such as Jatijajar2, Wates, Kutalimam1, and 
Kutalimam2 show very low average prices, with some approaching zero. This 
may indicate differences in quality, volume, or transaction methods that affect 
biomass prices at those suppliers. Overall, this graph illustrates a wide variation 
in biomass prices among suppliers over the past three years. 

Finally, Figure 3 shows the trend of average demand and biomass inventory with 
a rolling 30-day calculation for each supplier from January 2022 to the end of 
2024. Each panel of the graph represents one supplier and shows two lines, 
namely demand (D) and inventory (g). From the overall graph, it can be seen that 
most suppliers began to show significant activity in biomass demand and 
inventory in the middle to the end of the observation period. 

Suppliers such as Alas Malang, Jatijajar1, Jatiroto, Ngelosari, and Pagelaran 
exhibit relatively high and dynamic fluctuations in demand and inventory during 
this period. For instance, Alas Malang and Pagelaran show significant spikes in 
inventory that correlate with increasing demand. Conversely, suppliers such as 
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Kutalimam1, Kutalimam2, and Wates have very low or nearly invisible activity 
in the graph, indicating minimal contributions to biomass volume during this 
period. 

 

 
Figure 4 . 30 days Rolling Average of Demand and Inventory per Supplier 

 
Additionally, suppliers such as Jatijajar2 and Purwasaba show limited activity 
with sporadic increases in demand and inventory. Overall, this graph provides a 
detailed picture of how biomass demand and inventory fluctuate among each 
supplier, reflecting market dynamics and material availability at each supplier 
location over the last 3 years. 

In the optimization analysis, this study uses three suppliers with the highest 
supply from ten suppliers. The three biomass sawdust suppliers are Ngelosari, 
Pagelaran, and Alas Malang, which are considered to have more consistent data 
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within the range of 2022-2024 for Ngelosari and 2023-2024 for Pagelaran and 
Alas Malang. 

This study aims to identify optimal strategies in the distribution of biomass from 
the three main suppliers to reduce supply costs and improve the efficiency of the 
biomass supply chain system. The optimization results show a significant gap 
between actual conditions and optimal conditions in terms of supply volume and 
total supply costs per month. Based on biomass supply volume, on average, 
biomass suppliers provide volumes that are much higher than the optimal needs 
calculated through the optimization model, resulting in several months where 
suppliers do not consistently distribute biomass. 

For the supplier Ngelosari, the actual supply recorded is 1,340 tons per month, 
while the optimal need is only 853.65 tons, resulting in an excess supply of 486.35 
tons. Similarly, Pagelaran shows the largest difference, with an actual supply of 
1,898 tons, while the optimal supply is only 520.28 tons, indicating an excess 
supply of 1,377.72 tons. Alas Malang also does not escape this, with an actual 
supply of 1,632 tons, exceeding the optimal supply of 470.36 tons, resulting in 
an excess supply of 1,161.64 tons. This excess supply poses risks of logistical 
inefficiencies, stockpiling, and potential damage or waste of biomass raw 
materials. 

 

Table 1. Results of Biomass Supply Chain Optimization 

 
Based on total supply costs, the optimization model also identifies significant 
cost-saving potential if the company switches to an optimal supply scheme. In 
the case of Ngelosari, the current average cost is 6.2 billion rupiah per month. 
However, with optimal supply volume arrangements, this cost can be reduced to 
only 3.6 billion rupiah, representing a potential saving of 2.58 billion rupiah per 
month. Pagelaran can also drastically reduce its costs from 721 million rupiah to 
only 184 million rupiah per month, providing a potential saving of 537 million 

Supplier Unit Ngelosari Pagelarang Alas Malang 

Result 

Average Supply 

Biomassa 
Ton/Month 1340 1898 1632 

Optimal 

Biomass Supply 
Ton/ Month 853,65 520.28 470.36 

Diff. 486,35 1.377,72 1.161,64 

Total Average 

Cost 

IDR/Month 

 
6.200.981.884 721.379.654 671.482.482 

Total Minimal 

Cost 
IDR/Month 3.617.105.345 184.335.702 650.056.991 

Diff. 2.583.876.539 537.043.952 21.425.491 
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rupiah. Meanwhile, Alas Malang is the most efficient supplier in terms of 
alignment between actual and optimal supply. The actual cost of 671 million 
rupiah differs by only about 21 million rupiah from its optimal cost of 650 million 
rupiah. 

These results indicate that the current biomass supply structure is not optimal. 
There is significant potential for savings if the three suppliers adjust their supply 
volumes to optimal levels. Strategies that can be implemented include: First, 
rescheduling distribution from Ngelosari and Pagelaran to avoid over-supply. 
Second, revising supplier contracts to align quotas with real needs based on 
optimization data. Finally, prioritizing distribution from Alas Malang due to its 
high efficiency in terms of cost and volume. Through this data-driven approach, 
the company can not only significantly reduce operational costs but also enhance 

logistical sustainability and overall efficiency of the biomass supply chain. 

4 Conclusion 

The optimization analysis reveals significant inefficiencies in the current biomass 
supply chain, particularly in terms of supply volume and cost. The actual supply 
from the three main suppliers—Ngelosari, Pagelaran, and Alas Malang—exceeds 
the optimal calculated demand by substantial margins, leading to excess 
inventory, logistical inefficiencies, and higher operational costs. Notably, 
Pagelaran and Ngelosari exhibit the largest discrepancies, with potential monthly 
cost savings of 537 million rupiah and 2.58 billion rupiah, respectively, if supply 
volumes are adjusted to optimal levels. Alas Malang, however, demonstrates 
better alignment between actual and optimal supply, suggesting its distribution 
strategy could serve as a model for improving overall supply chain efficiency.   

To address these inefficiencies, strategic measures such as rescheduling 
distributions, revising supplier contracts, and prioritizing more cost-effective 
suppliers like Alas Malang are recommended. Implementing these data-driven 
adjustments would not only reduce operational costs but also enhance the 
sustainability and reliability of the biomass supply chain. By aligning supply 
volumes with actual demand, PT PLN and PLTU Adipala can minimize waste, 
optimize logistics, and ensure a more efficient and cost-effective biomass 
procurement process in the long term. 
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