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Abstract. Indonesia possessed significant solar energy potential, positioning it as
a key resource in the nation’s pathway toward achieving net-zero carbon emissions
by 2060. However, climate variability introduced uncertainties that could affect
long-term solar energy production and investment planning. This study
investigated the projected impacts of climate change on Indonesia’s solar
photovoltaic (PV) potential for the period 2030-2060, using outputs from five
global climate models (GCMs) participating in the Coupled Model
Intercomparison Project Phase 6 (CMIP6). Two emission scenarios were
considered: SSP1-2.6 (low emissions) and SSP5-8.5 (high emissions). Key
climate variables influencing PV performance’s surface downwelling shortwave
radiation, near-surface air temperature, and the wind speed were analyzed. The
model outputs were re-gridded to a 0.25° spatial resolution and bias-corrected
using statistical downscaling. The results revealed spatially variable responses of
PV potential to future climate change, with a projected decrease during the rainy
season and an increase during the dry season in specific regions. These findings
underscored the importance of incorporating climate projection uncertainties into
national renewable energy strategies to ensure adaptive and resilient solar energy
development in Indonesia under future climate conditions.
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1 Introduction

Greenhouse gas emissions from human activities had caused global warming,
with global surface temperatures reaching 1.1°C above the 1850—1900 baseline
during the 2011-2020 period. Global greenhouse gas emissions continued to rise,
driven by uneven contributions from unsustainable energy use, land use and land-
use change, as well as varying lifestyles and consumption production patterns
across regions, countries, and individuals. Public awareness and a broad range of
mitigation actions had supported global efforts to address anthropogenic climate
change, including the utilization of renewable energy [1].
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Among ASEAN countries, Indonesia possessed the most abundant solar energy
potential. Furthermore, Indonesia had committed to addressing climate change
and achieving net-zero carbon emissions by 2060. According to the national
energy plan, out of 443 GW of total renewable energy potential, 208 GW was
derived from solar energy sources [2]. In line with this national commitment, the
state electricity company (PLN) also adopted a net-zero emissions strategy in its
planning and investment decisions. The strategy focused on reducing fossil fuel
dependence and promoting renewable energy-based technologies and
ecosystems, including the development of solar power plants (PLTS) as outlined
in the 2021-2030 Electricity Supply Business Plan (RUPTL) [3].

Among various renewable energy options, solar energy was considered one of
the most promising due to its high reliability and significant utilization potential
[4]. However, its sensitivity to future weather variability posed uncertainties that
could complicate energy planning and negatively affect investment in the energy
sector. Solar radiation affected by cloud cover and aerosol concentrations served
as a direct indicator of solar energy potential. In addition, meteorological factors
such as air temperature and wind speed also influenced solar energy generation
[5]. Increased variability in future weather conditions was projected to raise
uncertainties in power output and amplify the need for energy storage and grid
stabilization services [6]. Therefore, it was necessary to consider various future
climate change scenarios to ensure the sustainable development of the solar
energy sector.

Previous studies had investigated the impact of climate change on solar energy
potential in various countries. On a global scale, average solar energy availability
between 2006 and 2100 was projected to decline, except for increases in East
Asia, Europe, Central Africa, and Central America. These projections exhibited
significant spatial variation even within the same region [5]. For instance,
research in Africa suggested a decline in annual solar energy potential in most
regions, with reductions reaching up to 6% in the Horn of Africa, driven by
reduced solar radiation and increased temperatures [7]. Similarly, studies in
Brazil indicated that climate change would likely result in significantly reduced
rainfall and higher temperatures compared to the late 20th century [8].

Additional research assessed changes in solar energy potential between 1961—
1990 and 2036-2065, revealing that increased air temperature and cloudiness
could reduce photovoltaic (PV) power output. For example, PV potential was
projected to decrease by 4% in the Arabian Peninsula by mid-century, while
increases of 5% and 3% were projected for central Europe and the Atacama
Desert, respectively. Meanwhile, southeastern Australia was expected to see a
2% decline, eastern China and Southeast Asia a 2% increase, and northwest
Africa a 2% decrease [6]. Despite these global efforts, limited research had been
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conducted using the latest climate change scenarios to evaluate future solar
energy potential in Indonesia.

The development of climate models had significantly enhanced assessments of
future climate risks. The latest outputs from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) provided improved data quality compared to the
previous CMIP5 generation [9]. However, no comprehensive study had yet
applied CMIP6 projections to assess Indonesia’s solar energy potential.
Therefore, this study aimed to analyze projected changes in solar energy potential
in Indonesia for the period 20302060 under the latest IPCC emission scenarios,
using an ensemble analysis of five CMIP6 global climate models.

2 Data

This study focused on the administrative region of Indonesia and employed
climate projections based on two Shared Socioeconomic Pathways (SSPs): SSP1-
2.6, representing a low-emission (best-case) scenario, and SSP5-8.5, representing
a high-emission (worst-case) scenario. The analysis covered two distinct periods:
a historical baseline (1980-2014) and a future projection period (2030-2060).
Climate data were sourced from the Coupled Model Intercomparison Project
Phase 6 (CMIP6) through the Earth System Grid Federation (ESGF) portal
(https://aims2.1Inl.gov/search/cmip6/).

Five CMIP6 global climate models were selected based on their development by
leading climate research institutions, featuring a range of spatial resolutions from
medium to high, and demonstrating strong performance in simulating both
historical climate conditions and future projections. The selected models are
listed in Table III.1, along with their respective spatial and temporal resolutions.
The primary climate variables used in this study included surface downwelling
shortwave radiation (I, in W/m?), near-surface air temperature (T, in °C) at 2
meters, and near-surface wind speed (WS, in m/s) at 10 meters. These variables
are critical inputs for estimating photovoltaic (PV) power output and assessing
solar energy potential.

Comparisons were made to evaluate the reliability of the CMIP6 model outputs
with observational reanalysis data from the ERAS dataset, obtained through the
Copernicus Climate Data Store (CDS)
(https://cds.climate.copernicus.eu/datasets/reanalysis-era5S-single-
levels?tab=overview). The ERAS dataset provided reference values for T, I, and
WS at a spatial resolution of 0.25° x 0.25° (latitude x longitude), and was used
as the observational baseline for bias correction.

The outputs of the five selected CMIP6 models were regridded to ensure
consistency in spatial resolution into a common resolution of 0.25° x 0.25° using
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bilinear interpolation [10]. In addition, a bias correction method using the delta-
change approach was applied to improve or adjust the projections of the global
climate model (GCM) to enhance accuracy. The delta-change method was
relatively simple and easy to implement, involving the calculation of the bias in
the mean values of the climate model data during the historical period compared
to observational data (in this study, the ERAS dataset). The derived bias was then
directly or proportionally subtracted from the projected future climate data to
correct the bias in the prediction period [1].

Table 1 Five Selected CMIP6 Global Climate Models

Model Tempo‘ral Spatial Resolution
Name Model Centre Resolution Grid Size Re-gridded
(Lon x Lat) (Lon x Lat)

Commonwealth
Scientific and
CSIRO | Industrial Research 1,875%x 1,25°
Organisation,
Australia

National Center for
NCAR | Atmospheric 0.94°x 1.25°
Research, USA
Model for
Interdisciplinary
Research on Climate,
Japan
Meteorological

MRI Research Institute, 1.11%1.12°
Japan

Max Planck Institute
MPI-HR | for Meteorology, 1.85°x1.88°
Germany

Day 0,25°x 0,25°

MIROC 1.39°x 1.41°

3 Methodology
3.1 Calculation of PV Potential

Photovoltaic (PV) potential represents the fraction of power output that a PV
module may produce under real field conditions relative to standardized test
conditions (Dutta et al., 2022). In this study, monthly estimates of PV potential
were calculated using climate variables obtained from five CMIP6 global climate
models (GCMs) under both SSP1-2.6 and SSP5-8.5 emission scenarios. The
required input variables included surface downwelling shortwave radiation (I),
near-surface air temperature (T), and near-surface wind speed (WS), all of which
were processed for the period 2030-2060. The PV potential was estimated by
multiplying the incident solar radiation by a performance ratio (PR), which
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accounts for efficiency losses due to temperature and other environmental factors.
The calculation followed the method proposed by Dutta et al. (2022), and was
expressed as:

I
PVpotZPRR (1)

Where [ is the Surface Downwelling Shortwave (SW) Radiation, ISTC is the SW
radiation at standard conditions, which is 1000 W/m2 [2]. Based on the research
of Dutta et al. (2022), PR was the performance ratio that takes into account the
effect of PV cell temperature (Tcell), that is:

Pr=1=y(Teeu — Tsrc) 2

Here, Tstc is the standard cell temperature (25°C), and y is the temperature
coefficient, typically 0.005 °C™' for monocrystalline silicon PV cells, which are
among the most widely used types. The cell temperature Tcell was modeled as a
function of ambient air temperature (T), solar radiation (I), and wind speed (WS),
using the empirical relationship.

Tcell = Cl + CzT + C3I - C4,WS (3)

The coefficients used for this equation, as suggested by Dutta et al. (2022), were
specific to monocrystalline silicon solar cells : ¢1 = 4,3°C, ¢» = 0,943, ¢3 =
0,028°CW-!' m? dan ¢4 = 1,528%m’'s which are used for monocrystalline silicon
solar cells [2].

These calculations allowed for monthly estimation of PV potential across
Indonesia, accounting for projected changes in climate conditions and their
impact on solar energy generation efficiency

3.2 Probability Analysis

A probability analysis was conducted to enhance the confidence level in assessing
photovoltaic (PV) potential across different regions using data from five CMIP6
global climate models. This approach evaluated the agreement among models in
projecting areas with high PV potential. Specifically, the analysis identified
locations where the estimated PV potential exceeded a predefined threshold,
indicating a high probability of solar energy development based on consistent
projections across the ensemble of climate models. Regions with stronger inter-
model agreement were considered to have more robust potential for future solar
energy deployment under varying climate scenarios.
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Table 2. Scientific interpretation of probability value

Probability Value Number of Models in Scientific Interpretation
Agreement (out of 5)

100% 5 models All models consistently indicated that the
region exceeded the threshold.

80% 4 models Four models suggested that the region
likely exceeded the threshold.

60% 3 models Three models indicated moderate
agreement on exceeding the threshold.

40% 2 models Two models showed limited agreement
regarding exceedance.

20% 1 model Only one model suggested that the
threshold was exceeded.

4 Results

4.1 Comparison of CMIP6 global climate model data with ERAS

To evaluate the CMIP6 global climate models, a comparison was conducted with
ERAS reanalysis data (Dutta et al., 2022).

ERAS Mean of Five CMIP6 climate Bias (Mean of five CMIP6
models climate models — ERAS)
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Figure 1. The spatial distribution between ERAS reanalysis data, the multi-model mean
of five CMIP6 climate models, and the bias, was analyzed for energy-related variables,
including (a) wind speed (m/s), (b) solar radiation intensity (W/m?), and (c) surface air
temperature, during the historical period from 1980 to 2014.

The evaluation of CMIP6 global climate models by comparing them with ERAS
reanalysis data was a common approach to assess the models performance in
representing climate conditions (Dutta et al., 2022). The analysis showed that the
average biases of these three parameters were relatively low across most land
areas of Indonesia, The negative bias was particularly evident in southern Java,
Bali, Nusa Tenggara, southern Kalimantan, coastal areas of Sulawesi, Maluku,
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and southern Papua. This negative bias appeared consistently across all three
variables. Meanwhile, the positive bias over land areas was relatively limited,
appearing sporadically only in parts of western Sumatra and northern
Kalimantan, especially for temperature and radiation variables. The bias
calculation results were used to correct the model data in estimating future
potential projections. Therefore, the application of bias correction methods was
an essential step in improving the accuracy of model data, ensuring that the
simulation results better reflected the actual climate conditions over the
Indonesian land areas.

4.2 Change in Photovoltaic (PV) Potential

In general, when observed from the spatial patterns, all five climate models
indicated that PVpot values decreased in the future period compared to the
historical PVpot values.
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Figure 2. The spatial distribution of the average PVpot fraction values across Indonesia
during the historical period from 1980 to 2014

Based on Figure 2, During the historical period from 1980 to 2014, based on the
analysis of five CMIP6 climate models, regions with the highest average PVpot
fraction approximately 0.24, represented by dark red were located in East Nusa
Tenggara (NTT), West Nusa Tenggara (NTB), and Bali. Areas with moderate
average PVpot fractions ranging from approximately 0.18 to 0.21 and shown in
grey to orange were found in Sumatera, northern Java, East Kalimantan, and
northern Sulawesi. Regions with low potential, indicated by blue, appeared in
Central Kalimantan and West Papua. In the future period, from 2030 to 2060, the
PVpot analysis was conducted using three SSP emission scenarios, as illustrated
in the following figure.
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Figure 3. The spatial distribution of the average PVpot fraction in Indonesia during the
future period from 2030 to 2060 under the SSP1-2.6

Figure 3 illustrated the average fraction of PVpot values under the low-emission
scenario (SSP1-2.6). Compared to the historical period, during the future period
from 2030 to 2060, a greater extent of areas exhibited lower PVpot values, as
indicated by the blue shading. Regions with moderate to high PVpot values were
located in Bali, East Nusa Tenggara (NTT), and West Nusa Tenggara (NTB).
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Figure 4. The spatial distribution of the average PVpot fraction in Indonesia during the
future period from 2030 to 2060 under the SSP 5-8.5

Figure 4 showed the average fraction of PVpot values under the high emission
scenario, SSP5-8.5. Compared to the historical period, during the future period
from 2030 to 2060, regions with moderate to high PVpot values were also located
in Madura, Bali, East Nusa Tenggara (NTT), West Nusa Tenggara (NTB), and
Central Sulawesi.

In general, Figure 5 presented the projected seasonal changes in photovoltaic
(PV) potential across Indonesia for the period 1980-2014 and 2030-2060. Each
map represented a different season, illustrating the spatial and temporal
variability in solar energy potential.
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Figure 5. Seasonal Changes in PV potential Five Model CMIP6

Each map represented a different season for both the historical and future
projection periods, with variations in PVpot values reflecting changes in solar
energy potential influenced by factors such as solar radiation, air temperature,
and wind speed. These factors affected the efficiency of solar panels in generating
energy across different regions and seasons. The transitional season (SON)
appeared to be the most stable and promising period for solar energy across most
of Indonesia’s land regions. The land areas of Bali and Nusa Tenggara showed
consistent positive potential, even under the high-emission scenario (SSP5-8.5),
indicating that these regions were suitable for long-term solar energy
development. To illustrate the overall statistical changes in PV potential values,
a density plot analysis was conducted.
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Figure 6. Distribution of photovoltaic (PV) potential values from historical period (1980—
2014) and future period (2030-2060) under SSP1-2.6 and SSP 5-8.5
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According to Figure 6, based on the PV potential density plot, the highest mean
value was observed under the SSP1-2.6 scenario (0.21945), followed by SSP5-
8.5 (0.21764), while the lowest value was recorded in the historical period
(0.21672). These results indicated that, on average, PV potential slightly
increased in future scenarios. Specifically, the mean PV potential under SSP1-2.6
increased by approximately 1.26% compared to the historical period, whereas
under SSP5-8.5, the increase was around 0.42%. In terms of standard deviation,
the highest value was observed under SSP5-8.5 (0.02594), followed by SSP1-2.6
(0.02583), with the lowest in the historical period (0.02467). These findings
suggested that as emission scenarios intensified, the spatial variability of PV
potential also increased, reflecting higher uncertainty in future solar energy
potential, particularly under the high-emission scenario SSP5-8.5.

These observations were consistent with previous studies, which reported that
under the low greenhouse gas emission scenario (SSP1-2.6), most regions
globally experienced slight increases in PV potential, with an average rate of
change of approximately 0.03% per decade. Notably, southeastern China and
India exhibited significant upward trends exceeding 0.1% per decade,
corresponding to an overall increase of around 5% in China and 1% in India for
the period 2025-2100 compared to 1990-2014. In contrast, under the high-
emission scenario (SSP5-8.5), a more pronounced global decrease in PV
potential was projected, averaging approximately 0.26% per decade, with
reductions of up to 3—4% in regions such as the Sahara Desert. Globally, PV
potential under SSP5-8.5 was estimated to be 1.5% lower than in the historical
period (1990-2014). These results supported the conclusion that while low-
emission scenarios may lead to modest improvements in solar energy potential,
high-emission trajectories could result in reduced and more uncertain PV
potential, both regionally and globally [12].

4.3 Probability of (PV) Potential

The spatial distribution of the probability of agreement among the five CMIP6
models regarding areas where PV potential exceeded a predefined threshold, for
the projection period 2030-2060 under SSP1-2.6 and SSP5-8.5, respectively.
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Figure 7. Probability of agreement among the five CMIP6 models regarding areas where
PV potential exceeded a predefined threshold, for the projection period 2030—2060 under
SSP1-2.6

Under the SSP1-2.6 scenario, high inter-model agreement (80—-100%) was
concentrated in the southern coastal areas of West Nusa Tenggara (NTB)
and East Nusa Tenggara (NTT), particularly across the smaller islands of
NTT. Moderate agreement (40—60%) was identified in Bali, Madura, and
parts of eastern Java, indicating reasonably promising potential despite the
lack of full consensus among models. In contrast, Sumatra, Kalimantan,
Sulawesi, and Papua were dominated by low agreement levels (<20%),
reflecting projection uncertainty likely influenced by local climatic factors
such as high precipitation, persistent cloud cover, and elevated humidity.
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Figure 8. Probability of agreement among the five CMIP6 models regarding areas where
PV potential exceeded a predefined threshold, for the projection period 2030—2060 under
SSP 5-8.5
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In comparison, the SSP5-8.5 scenario exhibited a significant expansion of areas
with high agreement regarding solar energy potential. Regions with 80—-100%
probability extended across a broader portion of NTT, including the eastern parts
such as Sumba Island, as well as several smaller islands near southern NTB and
Bali. Areas with moderate agreement became more limited compared to SSP1-
2.6, primarily appearing in eastern Madura and a small portion of NTT.
Nevertheless, Sumatra, Kalimantan, and Papua continued to show low levels of
model agreement, consistent with the patterns observed under the SSP1-2.6
scenario.

Overall, the CMIP6 multi-model ensemble provided a robust signal for
identifying regions with promising solar energy potential. The high level of
agreement in drier southern regions, particularly NTB and NTT, strengthened the
scientific basis for prioritizing solar development in these areas. These findings
also supported informed decision-making for future renewable energy planning
and policy development in Indonesia.

5 Conclusions

The probability analysis based on agreement among five CMIP6 models
indicated that the West Nusa Tenggara (NTB) and East Nusa Tenggara (NTT)
regions were the highest priority locations for solar energy development in
Indonesia during the 2030-2060 period. The strong inter-model consensus in
these regions reinforced the confidence that investments in solar energy
infrastructure would have positive and sustainable impacts. Consequently,
national energy planners and stakeholders such as PLN were advised to focus on
the development of large-scale solar power plants (PLTS) in NTB and NTT,
supported by the necessary grid infrastructure.

The Madura and Bali regions showed moderate potential for solar energy
development, suggesting that more adaptive strategies to local climate variability
were required. In these areas, medium-scale solar PV installations were
considered an effective approach. Meanwhile, Kalimantan, Sulawesi, and
Maluku regions exhibited lower prospects based on the national spatial analysis.
However, further studies with higher spatial resolution were recommended to
identify potential local opportunities that may have been overlooked in the
broader analysis.
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