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Abstract. Optimizing the operation of hydropower plants within the PLN
Sulawesi Generation Unit, this study proposes a data-driven approach to analyze
electricity production by incorporating weather-related variables. Using historical
data from January 2014 to December 2023, indicators relevant to PLTA electricity
output were extracted using machine learning algorithms. The integration of
electricity production data, dam-related variables, temperature, and rainfall allows
for accurate forecasting of electricity generation as the model’s output. The
processed data were obtained from PLTA in Sulawesi, as well as weather data
from websites of Accuweather and NOAA. The results demonstrate the predictive
performance of the proposed approach through model validation and comparison
with similar methods. The machine learning methods used in this study include
SARIMAX, Random Forest Regressor, Support Vector Regression, and Extreme
Gradient Boosting XGBoost. These models utilized a combination of electricity
production records, dam data, meteorological information, and four ENSO
indicators. The findings show that merging diverse data sources when significantly
correlated with the target variable can improve prediction accuracy, with one
algorithm emerging as the best performer. Every model was then applied to
forecast electricity production on a new, unseen dataset. The results of this study
indicate that machine learning is effective in predicting hydropower electricity
output and can serve as a strategic consideration for PLN's management in
planning and operating PLTA which was interconnected in a big electricity
system. This structured approach aligns with organizational goals and supports
informed decision-making in hydropower plant operations.
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1 Introduction

In this era of rapid technological advancements, the power sector is also required
to keep up with the fast-paced developments. Moreover, the shift in electricity
generation is now focusing on the effectiveness of operating Renewable Energy
(RE) plants, with this effectiveness becoming a key determinant of organizational
success. This is particularly true for large companies like PLN, where the
operation of hydropower plants (PLTAs) becomes a primary focus. The adoption
of advanced technologies such as machine learning is highly relevant in this
context. The implementation of this technology is not limited to specific
industries but has proven successful across various sectors in facilitating faster
and more accurate decision-making.

Hydropower remains one of the most reliable sources of renewable energy,
contributing significantly to global electricity generation. However, its
performance is inherently sensitive to weather conditions, particularly
precipitation and temperature. These environmental factors directly affect river
discharge levels, which are critical for hydropower plant operations. A study
conducted in Nepal highlighted that seasonal fluctuations in rainfall and
temperature significantly impacted hydropower generation, underlining the
sector’s vulnerability to climatic variability [1].

Climate-related disruptions to hydropower are not confined to tropical regions.
In Switzerland, for example, studies have indicated that hot and dry weather can
significantly impact the performance of hydropower facilities—particularly those
based on run-of-the-river systems with minimal storage capacity [2]. On a
broader scale, global climate oscillations such as the El Nifio—Southern
Oscillation (ENSO) have been recognized as major factors contributing to
fluctuations in hydropower generation worldwide [3]. These insights underline
the necessity of developing forward-looking and adaptive planning methods to
strengthen the resilience of hydropower infrastructure in the face of climate
variability.

The Southern Oscillation Index (SOI) is one of the principal tools used to observe
and analyze ENSO behavior. It is derived from comparing sea-level atmospheric
pressure between two key locations: Tahiti and Darwin, Australia. This
comparison reveals broad pressure variations across the tropical Pacific. When
SOI values are negative, it generally signals an El Nifio episode—characterized
by lower-than-normal pressure in Tahiti and elevated pressure in Darwin.
Conversely, positive SOI values typically point to La Nifia conditions [4].

El Nifio and La Nifia episodes are further characterized by variations in sea
surface temperatures (SSTs) in the equatorial Pacific, especially in the Nifio 3.4
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region. These events are defined by the Oceanic Nifio Index (ONI), which
considers a five-period moving average of SST anomalies. An anomaly
exceeding +0.5°C over five consecutive 3-month intervals is categorized as El
Nifo, while a drop below -0.5°C over the same span marks a La Nifia event [4].

The Nifio 3.4 region is widely used to classify El Nifio strength due to its strategic
location along the equatorial Pacific, where fluctuations in SSTs strongly
influence atmospheric convection patterns. Typically, a temperature increase of
just +0.5°C is enough to trigger deep convection from March to June. However,
during the rest of the year, larger anomalies are necessary—sometimes reaching
+1.5°C during November to January—to maintain strong convection patterns [4].

While the Nifio 3.4 region is standard for identifying La Nifia events, some argue
that the Nifio 4 region may provide better accuracy since its baseline SSTs are
usually at or above the deep convection threshold year-round. Thus, a negative
anomaly of -0.5°C in Nifio 4 can effectively disrupt convection, causing it to shift
westward across the Pacific [4].

To complement these observations, Outgoing Longwave Radiation (OLR) data
are also utilized to understand atmospheric convection and cloud dynamics.
These OLR values are captured by NOAA’s AVHRR instruments aboard orbiting
satellites, with a focus on the equatorial zone between 160°E and 160°W. During
El Nifio, there is a notable drop in OLR values, indicating enhanced cloudiness
and rainfall. On the other hand, higher OLR values reflect a decrease in cloud
activity, which is commonly associated with La Nifia patterns [4].

Despite the increasing integration of renewable energy into national grids, there
remains a significant gap in accurately forecasting hydropower electricity
generation, particularly in regions like Sulawesi where climate variability and
hydrological conditions are complex. Existing studies have predominantly
focused on global or national-scale hydropower prediction, often overlooking
localized environmental and operational factors that influence power output.
Furthermore, few studies have combined meteorological variables with dam-
specific and ENSO-related indicators in a unified machine learning framework.
This study addresses that gap by proposing a data-driven approach tailored to the
operational context of PLTA in Sulawesi, Indonesia. The main objective is to
evaluate and compare the performance of several machine learning algorithms—
SARIMAX, SVR, Random Forest, and XGBoost—in forecasting electricity
production using an integrated dataset. By doing so, the study contributes a
practical framework for PLN and similar utilities to enhance short-term planning
and optimize hydropower operations through intelligent forecasting.
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2 Methodology

2.1 Overview of Machine Learning Approaches

This study utilizes supervised machine learning algorithms to predict electricity
production in a hydropower plant. Supervised learning involves training models
on labeled historical data, where the goal is to learn the mapping between input
features (e.g., weather and dam data) and the output target (electricity
production). This approach is suitable for regression tasks and is commonly used
in predictive modeling across various domains. The algorithms applied in this
study are: Seasonal AutoRegressive Integrated Moving Average with eXogenous
variables (SARIMAX), Random Forest Regressor (RFR), Support Vector
Regression (SVR), and Extreme Gradient Boosting (XGBoost).

2.2 SARIMAX

SARIMAX is a time series forecasting model that extends the ARIMA model by
incorporating both seasonal components and exogenous variables. This enables
the model to account for external influences like rainfall or temperature, which
can significantly affect electricity generation. SARIMAX combines
autoregressive (AR), differencing (I), and moving average (MA) elements with
seasonal terms and additional regressors [6].

The relevance of SARIMAX for forecasting with exogenous features has been
demonstrated in prior research. For instance, Farikh et al. (2024) achieved
superior accuracy using SARIMAX for sales forecasting with weather variable
compared to the Vector Auto Regression (VAR) model, as indicated by a lower
RMSE (8.966 vs. 24.171) [6].

In this study, SARIMAX parameters were selected using grid search to optimize
hyperparameters such as p, d, q, P, D, Q, and s.

2.3 Random Forest Regressor (RFR)

Random Forest Regressor is an ensemble learning algorithm that builds multiple
decision trees using random subsets of the training data and features. It then
aggregates their predictions to improve accuracy and prevent overfitting [7]. The
model is known for its robustness, interpretability, and ability to rank feature
importance. In this study, the RFR was tuned using grid search to optimize
hyperparameters such as n_estimators, max_depth, and min_samples_split.
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In previous work, Random Forest models have been successfully applied to
predict energy demand and production. However, studies such as Gokge et al.
(2022) found that while RFR was effective, it was outperformed by XGBoost in
terms of RMSE [8].

2.4 Support Vector Regression (SVR)

Support Vector Regression (SVR) extends the Support Vector Machine (SVM)
framework to regression tasks. It attempts to fit a function within a specified
margin while minimizing model complexity [11]. SVR is particularly effective
when paired with kernel functions such as the Radial Basis Function (RBF),
which allows it to model non-linear relationships in data.

In this study, SVR was used with an RBF kernel, and its performance was fine-
tuned using C, gamma, and epsilon through grid search. Prior studies have
highlighted the effectiveness of SVR in time series prediction. Abba et al. (2021)
compared standalone SVR with hybrid SVR models using optimization
algorithms such as Harris Hawks Optimization (HHO), with SVR-HHO
achieving an R? of 0.9951 for electricity load demand prediction [12].

2.5 Extreme Gradient Boosting (XGBoost)

XGBoost is a high-performance implementation of gradient boosted trees
designed for efficiency and accuracy. It builds additive regression models in a
forward stage-wise manner and allows for regularization to reduce overfitting.
The model has gained popularity for its consistent success in machine learning
competitions [9].

In this study, XGBoost was applied to model -electricity output, and
hyperparameters such as learning rate, max_ depth, and n_estimators were
optimized. The study by Gokge et al. (2022) found that XGBoost outperformed
Random Forest and linear models in forecasting electricity consumption,
achieving the lowest RMSE [8]. Similarly, Li et al. (2024) demonstrated that
XGBoost, especially when combined with optimization techniques like the
Sparrow Search Algorithm (SSA), resulted in improved accuracy for energy
consumption forecasting [10].
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Here are the parameter used on each model based on grid search that has been
implemented shown below on Table 1.

Table 1 Best parameter for each model

No Model Parameter
p=1, d=0, g=1,
1 SARIMAX P=1, D=1, Q=1,
s=1

max depth= None,
2 RFR min samples split =5,
n estimators= 150

C=10,
3 SVR epsilon=0,01,
kernel= linear

learning rate= 0,1,
4 XGBoost max depth= 3,
n estimators= 100

2.6 Research Methodology Steps

The historical hydrology data used in this study comes from a hydropower plant
(PLTA) located in a city in South Sulawesi. Historical weather data was obtained
from the Accuweather website, and ENSO data was sourced from the NOAA
website. The overall process flow can be seen in Figure 1.

PREPROCESSING

DATASET SPLITING DATA

DATASET AWAL
T
100

101911
o100}

PERMODELAN ALGORITMA
MACHINE LEARNING

Random Forest XGBoost
Regressor

Figure 1 Research Process Flowchart
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For the simulation of the four machine learning algorithms in this study, the
Python programming language was used via the Jupyter Notebook application.

Based on Figure 1, a detailed explanation of each testing step is described as
follows:

Preparing data from the hydropower plant (PLTA), which was originally in daily
format and then averaged to obtain monthly values. The daily data spans from
January 2014 to December 2023. Although the original dataset contained 3,652
daily observations, the data was aggregated into 120 monthly samples. This
decision is justified by both methodological and practical considerations. Daily
data often exhibit high variability due to short-term fluctuations such as extreme
weather, sensor errors, or local anomalies. Aggregating to monthly values helps
to reduce this noise, providing a more stable and representative signal for machine
learning models. Moreover, granular data may lead to overfitting, particularly
when used with traditional machine learning algorithms that are not specifically
designed to handle high-frequency time series.

Monthly data, on the other hand, align better with the long-term analytical goals,
such as identifying seasonal trends or evaluating the impact of climate variables
on energy production. This format is also more suitable for strategic and policy-
level decision-making due to its simplicity and interpretability. From a
computational perspective, using fewer samples enables faster model training and
reduces the complexity of parameter tuning. Thus, the choice to use 120 monthly
samples is both analytically sound and practically efficient.

The selected variables include load, electricity production, elevation, discharge,
spillway, and inflow. The data is shown in Table 2.

Table 2 Hydrology data overview

. . . Produksi

Beban Discharge Inflow Limpasan Elevasi Litrik

0 11182 3716 6733 29.66 61544 83724.80
1 7825 2710 283 1.73 61531 52353.10
2 8826 3344 3512 530 61529 66592.80
3 11037 35.99 36.85 9.60 615.19 79574.20

4 12058 38.91 67.33 29.66 61544 89737.70
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Weather-related data were then prepared, including values for SLP Anomaly,
OLR Anomaly, SST Region 3.4 Anomaly, and ONI Anomaly, as shown in Table
3.

Table 3 Weather data overview

Act. Act. Norm Norm Norm Norm Precip %?l SLP OLR S3S;l’ ONI

Low Avg High Low Avg.  Dept. . Amt 8 Anom  Anom y Anom
Day Anom

2371 27.13  29.00 23.00 26.00 1.13 3.24 9.13 2.40 3.80 -0.49 -0.42
2339 2771 29.00 23.04 2600 1.71 1.49 9.71 0.10 3.30 0.85 -0.46
2342 28.10 29.00 23.00 2652 1.8 0.82 10.10 -1.50 -17.30 0.34 -0.27
23.80 2833 29.53 23.00 27.00 133 0.85 10.33 1.30 -15.00  0.18 0.04
2397 28.87 30.03 23.00 27.00 1.87 0.70 10.87 0.90 -2.00 0.45 0.21

These two datasets were combined into a single dataset, ensuring that all data was
numerical and there were no non-null categorical data. Correlation matrix was
then calculated between variables to measure the strength and direction of linear
relationships. For weather data, a cross-correlation was performed with a lag of
3 months to detect the delayed effect of weather on electricity production, which
is the target variable of this study.As shown in Figure 2, the correlation matrix
among variables, especially weather data, reveals a moderate to fairly strong
positive correlation ranging from 0.26 to 0.69 with electricity production.

This indicates that weather conditions, even with a 3-month lag, are related to
current electricity production. The highest correlation within the temperature
category and electricity production was observed in the variable Act. Low (actual
lowest temperature) with a value of 0.69. The correlation between rainfall and
electricity production was 0.41, and for ENSO indicators, the correlation ranged
from 0.39 to 0.40. Based on these results, weather data variables such as
temperature, rainfall, and ENSO indicators can be used as input features in the
four machine learning algorithms tested in this study.

The dataset was then preprocessed using the ‘Min-Max Scaler’ library, as the
range of values among the variables in the dataset varied significantly. This step
was intended to bring all features into the same scale range to enhance the
performance of the four machine learning algorithms used. The next step was
splitting the dataset into 70% training data and 30% testing data.
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Figure 2 Matrix correlation of dataset

After that, 4 machine learning models were developed using grid search to tune
parameters in order to achieve the best model performance, evaluated using
accuracy metrics such as RMSE, MAE, MAPE, and R?. The best-performing
model was then tested by making predictions on a data outside the training
dataset, which were then compared to actual data with the same variables for the
first semester of 2024.

3 Result and Discussion

Based on the testing results, as shown in Table 4 below:

Table 4 Evaluation metric of 4 models

Model Performance

No Algorithm
MSE RMSE R? MAPE

1 SARIMAX 0.0002 0.0153 0.9919 1.67%
2 RFR 0.0013 0.0367 0.9639  5.08%
3 SVR 0.0006 0.0253 09828 2,48%
4

XGBoost 0.0022  0.0472  0.9403 5.83%
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From the table above, it can be concluded that the SARIMAX model with
parameters p=1, d=0, g=1, P=1, D=1, Q=1, and s=12 is the best model for this
dataset, as it shows the most optimal performance based on evaluation metrics
including MSE, RMSE, R?, and MAPE. The other models (RFR, SVR, and
XGBoost) also demonstrated reasonably good performance, though not as strong
as SARIMAX during the model building.

VIV

(A) SARIMAX (B) SVR

Dt mdex ‘ B " - Data index -
(O) RFR (D) XGBoost

Figure 3 Prediction Model

However, when testing each model using their best-tuned parameters for
forecasting first semester 2024 data, the RFR model achieved the overall best
performance, with the lowest MAPE of 4.10%, and the highest R? value of
0.9686. This indicates a very strong and accurate predictive capability. XGBoost
model competitively has a high R? of 0.9626 and MAPE of 4.29%. a little bit
higher than RFR model.

On the other hand, SARIMAX failed to demonstrate good performance at both
scales, as indicated by a negative R? value and a MAPE exceeding 28.14%,
suggesting that the model was unable to capture the data patterns in the new
dataset effectively, despite being the best-performing model during the initial
model development phase, as shown in Table 5 and Figure 4. below.
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Table 5 Evaluation metrics of 4 models in forecasting first semester 2024 data

Model Performance

No Algorithm
MSE RMSE R? MAPE

1 SARIMAX 0.2015 0.4489 -0.664 28.14%
2 RFR 0.0017 0.0415 0.9686 4.10%
3 SVR 0.0216  0.1471 0.6057 21.12%
4

XGBoost 0.002 0.0451  0.9629 4.29%

rTson Actuat Vi P ster 120241

(A) SARIMAX (B) SVR

Tomparisan: ACtual vs Pred. mester 1 20241 Comparisan Actual vs Preaicted (Semester 1 20247

Data I

(C) RFR (D) XGBoost

Figure 4 2024 First Semester Forecast

A drastic and suspicious drop in SARIMAX performance was observed, with the
R? value declining from 0.9919 during internal testing to -0.664 on out-of-sample
data. This significant degradation strongly suggests a critical issue in the model's
ability to generalize beyond the training distribution. A negative R? indicates that
the model performs worse than a naive mean predictor, typically resulting when
the residual sum of squares exceeds the total sum of squares.

Several factors may explain this anomaly. First, SARIMAX is highly sensitive to
data structure and may have overfitted to short-term seasonal or trend patterns
specific to the training set. Second, the out-of-sample data likely exhibit different
temporal dynamics or non-stationarities that the model was not exposed to during
training. Third, SARIMAX assumes a degree of stationarity, and any structural
shifts or noise in the test data can severely impact its accuracy.
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Furthermore, the internal evaluation (Table 1) may have used a validation set that
was too similar to the training data, thereby inflating performance metrics.
Notably, while other models such as Random Forest, SVR, and XGBoost also
experienced declines in performance on out-of-sample data, the magnitude was
significantly smaller. Random Forest and XGBoost maintained high R? values
(0.9686 and 0.9629, respectively), while SVR, although affected more strongly
(R*=0.6057, MAPE = 21.12%), still outperformed SARIMAX.

These results underscore the importance of validating time series models on truly
unseen data and highlight the advantages of using more adaptive or hybrid
machine learning approaches in forecasting tasks involving complex, evolving
data.

4 Conclusion and Suggestion

While SARIMAX excelled during the fitting process, XGBoost is more
recommended for future predictions, as it proved to be superior in forecasting
unseen data (first semester 2024). This is a crucial aspect for model deployment
in actual prediction systems.

Based on the analysis, it can be concluded that weather variables such as
temperature and humidity, rainfall, and ENSO indicators play a significant role
in influencing electricity production, particularly for renewable energy-based
power plants like hydropower plant. These three groups of variables show
correlated patterns, either directly or with time lags, indicating that climate
conditions and global weather anomalies can have tangible impacts on energy
availability and efficiency. Therefore, these variables are highly relevant and
suitable as predictors in future electricity production forecasting models.

For future research, it is recommended to include additional features such as land
surface temperature index, wind speed, and others to further improve the model’s
performance. It would also be beneficial to experiment with model combinations
or hybrid approaches to enhance prediction accuracy even further.
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