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Abstract. Optimizing the operation of hydropower plants within the PLN 

Sulawesi Generation Unit, this study proposes a data-driven approach to analyze 

electricity production by incorporating weather-related variables. Using historical 

data from January 2014 to December 2023, indicators relevant to PLTA electricity 

output were extracted using machine learning algorithms. The integration of 

electricity production data, dam-related variables, temperature, and rainfall allows 

for accurate forecasting of electricity generation as the model’s output. The 

processed data were obtained from PLTA in Sulawesi, as well as weather data 

from websites of Accuweather and NOAA. The results demonstrate the predictive 

performance of the proposed approach through model validation and comparison 

with similar methods. The machine learning methods used in this study include 

SARIMAX, Random Forest Regressor, Support Vector Regression, and Extreme 

Gradient Boosting XGBoost. These models utilized a combination of electricity 

production records, dam data, meteorological information, and four ENSO 

indicators. The findings show that merging diverse data sources when significantly 

correlated with the target variable can improve prediction accuracy, with one 

algorithm emerging as the best performer. Every model was then applied to 

forecast electricity production on a new, unseen dataset. The results of this study 

indicate that machine learning is effective in predicting hydropower electricity 

output and can serve as a strategic consideration for PLN's management in 

planning and operating PLTA which was interconnected in a big electricity 

system. This structured approach aligns with organizational goals and supports 

informed decision-making in hydropower plant operations. 

Keywords: electricity production, hydropower plant, machine learning, temperature, 
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1 Introduction 

In this era of rapid technological advancements, the power sector is also required 

to keep up with the fast-paced developments. Moreover, the shift in electricity 

generation is now focusing on the effectiveness of operating Renewable Energy 

(RE) plants, with this effectiveness becoming a key determinant of organizational 

success. This is particularly true for large companies like PLN, where the 

operation of hydropower plants (PLTAs) becomes a primary focus. The adoption 

of advanced technologies such as machine learning is highly relevant in this 

context. The implementation of this technology is not limited to specific 

industries but has proven successful across various sectors in facilitating faster 

and more accurate decision-making. 

Hydropower remains one of the most reliable sources of renewable energy, 

contributing significantly to global electricity generation. However, its 

performance is inherently sensitive to weather conditions, particularly 

precipitation and temperature. These environmental factors directly affect river 

discharge levels, which are critical for hydropower plant operations. A study 

conducted in Nepal highlighted that seasonal fluctuations in rainfall and 

temperature significantly impacted hydropower generation, underlining the 

sector’s vulnerability to climatic variability [1]. 

Climate-related disruptions to hydropower are not confined to tropical regions. 

In Switzerland, for example, studies have indicated that hot and dry weather can 

significantly impact the performance of hydropower facilities—particularly those 

based on run-of-the-river systems with minimal storage capacity [2]. On a 

broader scale, global climate oscillations such as the El Niño–Southern 

Oscillation (ENSO) have been recognized as major factors contributing to 

fluctuations in hydropower generation worldwide [3]. These insights underline 

the necessity of developing forward-looking and adaptive planning methods to 

strengthen the resilience of hydropower infrastructure in the face of climate 

variability. 

The Southern Oscillation Index (SOI) is one of the principal tools used to observe 

and analyze ENSO behavior. It is derived from comparing sea-level atmospheric 

pressure between two key locations: Tahiti and Darwin, Australia. This 

comparison reveals broad pressure variations across the tropical Pacific. When 

SOI values are negative, it generally signals an El Niño episode—characterized 

by lower-than-normal pressure in Tahiti and elevated pressure in Darwin. 

Conversely, positive SOI values typically point to La Niña conditions [4]. 

El Niño and La Niña episodes are further characterized by variations in sea 

surface temperatures (SSTs) in the equatorial Pacific, especially in the Niño 3.4 
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region. These events are defined by the Oceanic Niño Index (ONI), which 

considers a five-period moving average of SST anomalies. An anomaly 

exceeding +0.5°C over five consecutive 3-month intervals is categorized as El 

Niño, while a drop below -0.5°C over the same span marks a La Niña event [4]. 

The Niño 3.4 region is widely used to classify El Niño strength due to its strategic 

location along the equatorial Pacific, where fluctuations in SSTs strongly 

influence atmospheric convection patterns. Typically, a temperature increase of 

just +0.5°C is enough to trigger deep convection from March to June. However, 

during the rest of the year, larger anomalies are necessary—sometimes reaching 

+1.5°C during November to January—to maintain strong convection patterns [4]. 

While the Niño 3.4 region is standard for identifying La Niña events, some argue 

that the Niño 4 region may provide better accuracy since its baseline SSTs are 

usually at or above the deep convection threshold year-round. Thus, a negative 

anomaly of -0.5°C in Niño 4 can effectively disrupt convection, causing it to shift 

westward across the Pacific [4]. 

To complement these observations, Outgoing Longwave Radiation (OLR) data 

are also utilized to understand atmospheric convection and cloud dynamics. 

These OLR values are captured by NOAA’s AVHRR instruments aboard orbiting 

satellites, with a focus on the equatorial zone between 160°E and 160°W. During 

El Niño, there is a notable drop in OLR values, indicating enhanced cloudiness 

and rainfall. On the other hand, higher OLR values reflect a decrease in cloud 

activity, which is commonly associated with La Niña patterns [4]. 

Despite the increasing integration of renewable energy into national grids, there 

remains a significant gap in accurately forecasting hydropower electricity 

generation, particularly in regions like Sulawesi where climate variability and 

hydrological conditions are complex. Existing studies have predominantly 

focused on global or national-scale hydropower prediction, often overlooking 

localized environmental and operational factors that influence power output. 

Furthermore, few studies have combined meteorological variables with dam-

specific and ENSO-related indicators in a unified machine learning framework. 

This study addresses that gap by proposing a data-driven approach tailored to the 

operational context of PLTA in Sulawesi, Indonesia. The main objective is to 

evaluate and compare the performance of several machine learning algorithms—

SARIMAX, SVR, Random Forest, and XGBoost—in forecasting electricity 

production using an integrated dataset. By doing so, the study contributes a 

practical framework for PLN and similar utilities to enhance short-term planning 

and optimize hydropower operations through intelligent forecasting. 
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2 Methodology 

2.1 Overview of Machine Learning Approaches 

This study utilizes supervised machine learning algorithms to predict electricity 

production in a hydropower plant. Supervised learning involves training models 

on labeled historical data, where the goal is to learn the mapping between input 

features (e.g., weather and dam data) and the output target (electricity 

production). This approach is suitable for regression tasks and is commonly used 

in predictive modeling across various domains. The algorithms applied in this 

study are: Seasonal AutoRegressive Integrated Moving Average with eXogenous 

variables (SARIMAX), Random Forest Regressor (RFR), Support Vector 

Regression (SVR), and Extreme Gradient Boosting (XGBoost). 

2.2  SARIMAX 

SARIMAX is a time series forecasting model that extends the ARIMA model by 

incorporating both seasonal components and exogenous variables. This enables 

the model to account for external influences like rainfall or temperature, which 

can significantly affect electricity generation. SARIMAX combines 

autoregressive (AR), differencing (I), and moving average (MA) elements with 

seasonal terms and additional regressors [6].  

The relevance of SARIMAX for forecasting with exogenous features has been 

demonstrated in prior research. For instance, Farikh et al. (2024) achieved 

superior accuracy using SARIMAX for sales forecasting with weather variable 

compared to the Vector Auto Regression (VAR) model, as indicated by a lower 

RMSE (8.966 vs. 24.171) [6]. 

In this study, SARIMAX parameters were selected using grid search to optimize 

hyperparameters such as p, d, q, P, D, Q, and s. 

2.3 Random Forest Regressor (RFR) 

Random Forest Regressor is an ensemble learning algorithm that builds multiple 

decision trees using random subsets of the training data and features. It then 

aggregates their predictions to improve accuracy and prevent overfitting [7]. The 

model is known for its robustness, interpretability, and ability to rank feature 

importance. In this study, the RFR was tuned using grid search to optimize 

hyperparameters such as n_estimators, max_depth, and min_samples_split. 
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In previous work, Random Forest models have been successfully applied to 

predict energy demand and production. However, studies such as Gökçe et al. 

(2022) found that while RFR was effective, it was outperformed by XGBoost in 

terms of RMSE [8]. 

2.4 Support Vector Regression (SVR) 

Support Vector Regression (SVR) extends the Support Vector Machine (SVM) 

framework to regression tasks. It attempts to fit a function within a specified 

margin while minimizing model complexity [11]. SVR is particularly effective 

when paired with kernel functions such as the Radial Basis Function (RBF), 

which allows it to model non-linear relationships in data. 

In this study, SVR was used with an RBF kernel, and its performance was fine-

tuned using C, gamma, and epsilon through grid search. Prior studies have 

highlighted the effectiveness of SVR in time series prediction. Abba et al. (2021) 

compared standalone SVR with hybrid SVR models using optimization 

algorithms such as Harris Hawks Optimization (HHO), with SVR-HHO 

achieving an R² of 0.9951 for electricity load demand prediction [12]. 

2.5 Extreme Gradient Boosting (XGBoost) 

XGBoost is a high-performance implementation of gradient boosted trees 

designed for efficiency and accuracy. It builds additive regression models in a 

forward stage-wise manner and allows for regularization to reduce overfitting. 

The model has gained popularity for its consistent success in machine learning 

competitions [9]. 

In this study, XGBoost was applied to model electricity output, and 

hyperparameters such as learning_rate, max_depth, and n_estimators were 

optimized. The study by Gökçe et al. (2022) found that XGBoost outperformed 

Random Forest and linear models in forecasting electricity consumption, 

achieving the lowest RMSE [8]. Similarly, Li et al. (2024) demonstrated that 

XGBoost, especially when combined with optimization techniques like the 

Sparrow Search Algorithm (SSA), resulted in improved accuracy for energy 

consumption forecasting [10]. 
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Here are the parameter used on each model based on grid search that has been 

implemented shown below on Table 1. 

Table 1 Best parameter for each model 

No Model Parameter 

1 SARIMAX 

p=1, d=0, q=1,  

P=1, D=1, Q=1,  

s=12 

2 RFR 

max depth= None,  

min samples split =5,  

n estimators= 150 

3 SVR 

C=10,  

epsilon=0,01,  

kernel= linear 

4 XGBoost 

learning rate= 0,1,  

max depth= 3,  

n estimators= 100 

2.6 Research Methodology Steps 

The historical hydrology data used in this study comes from a hydropower plant 

(PLTA) located in a city in South Sulawesi. Historical weather data was obtained 

from the Accuweather website, and ENSO data was sourced from the NOAA 

website. The overall process flow can be seen in Figure 1. 

 

Figure 1 Research Process Flowchart 
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For the simulation of the four machine learning algorithms in this study, the 

Python programming language was used via the Jupyter Notebook application. 

Based on Figure 1, a detailed explanation of each testing step is described as 

follows: 

Preparing data from the hydropower plant (PLTA), which was originally in daily 

format and then averaged to obtain monthly values. The daily data spans from 

January 2014 to December 2023. Although the original dataset contained 3,652 

daily observations, the data was aggregated into 120 monthly samples. This 

decision is justified by both methodological and practical considerations. Daily 

data often exhibit high variability due to short-term fluctuations such as extreme 

weather, sensor errors, or local anomalies. Aggregating to monthly values helps 

to reduce this noise, providing a more stable and representative signal for machine 

learning models. Moreover, granular data may lead to overfitting, particularly 

when used with traditional machine learning algorithms that are not specifically 

designed to handle high-frequency time series.  

Monthly data, on the other hand, align better with the long-term analytical goals, 

such as identifying seasonal trends or evaluating the impact of climate variables 

on energy production. This format is also more suitable for strategic and policy-

level decision-making due to its simplicity and interpretability. From a 

computational perspective, using fewer samples enables faster model training and 

reduces the complexity of parameter tuning. Thus, the choice to use 120 monthly 

samples is both analytically sound and practically efficient. 

The selected variables include load, electricity production, elevation, discharge, 

spillway, and inflow. The data is shown in Table 2.  

Table 2 Hydrology data overview 
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Weather-related data were then prepared, including values for SLP Anomaly, 

OLR Anomaly, SST Region 3.4 Anomaly, and ONI Anomaly, as shown in Table 

3. 

Table 3 Weather data overview 

Act. 

Low 

Act. 

Avg 

Norm 

High 

Norm 

Low 

Norm 

Avg. 

Norm 

Dept. 

Precip

. Amt 

Cool 

Deg 

Day 

SLP 

Anom 

OLR 

Anom 

SST 

3.4 

Anom 

ONI 

Anom 

23.71 27.13 29.00 23.00 26.00 1.13 3.24 9.13 2.40 3.80 -0.49 -0.42 

23.39 27.71 29.00 23.04 26.00 1.71 1.49 9.71 0.10 3.30 -0.85 -0.46 

23.42 28.10 29.00 23.00 26.52 1.58 0.82 10.10 -1.50 -17.30 -0.34 -0.27 

23.80 28.33 29.53 23.00 27.00 1.33 0.85 10.33 1.30 -15.00 0.18 0.04 

23.97 28.87 30.03 23.00 27.00 1.87 0.70 10.87 0.90 -2.00 0.45 0.21 

… … … … … … … … … … … … 

 

These two datasets were combined into a single dataset, ensuring that all data was 

numerical and there were no non-null categorical data. Correlation matrix was 

then calculated between variables to measure the strength and direction of linear 

relationships. For weather data, a cross-correlation was performed with a lag of 

3 months to detect the delayed effect of weather on electricity production, which 

is the target variable of this study.As shown in Figure 2, the correlation matrix 

among variables, especially weather data, reveals a moderate to fairly strong 

positive correlation ranging from 0.26 to 0.69 with electricity production. 

This indicates that weather conditions, even with a 3-month lag, are related to 

current electricity production. The highest correlation within the temperature 

category and electricity production was observed in the variable Act. Low (actual 

lowest temperature) with a value of 0.69. The correlation between rainfall and 

electricity production was 0.41, and for ENSO indicators, the correlation ranged 

from 0.39 to 0.40. Based on these results, weather data variables such as 

temperature, rainfall, and ENSO indicators can be used as input features in the 

four machine learning algorithms tested in this study. 

The dataset was then preprocessed using the ‘Min-Max Scaler’ library, as the 

range of values among the variables in the dataset varied significantly. This step 

was intended to bring all features into the same scale range to enhance the 

performance of the four machine learning algorithms used. The next step was 

splitting the dataset into 70% training data and 30% testing data.  
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Figure 2 Matrix correlation of dataset 

After that, 4 machine learning models were developed using grid search to tune 

parameters in order to achieve the best model performance, evaluated using 

accuracy metrics such as RMSE, MAE, MAPE, and R². The best-performing 

model was then tested by making predictions on a data outside the training 

dataset, which were then compared to actual data with the same variables for the 

first semester of 2024. 

3 Result and Discussion 

Based on the testing results, as shown in Table 4 below:  

Table 4 Evaluation metric of 4 models 

No Algorithm 
Model Performance 

MSE RMSE R2 MAPE 

1 SARIMAX 0.0002 0.0153 0.9919 1.67% 

2 RFR 0.0013 0.0367 0.9639 5.08% 

3 SVR 0.0006 0.0253 0.9828 2,48% 

4 XGBoost 0.0022 0.0472 0.9403 5.83% 
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From the table above, it can be concluded that the SARIMAX model with 

parameters p=1, d=0, q=1, P=1, D=1, Q=1, and s=12 is the best model for this 

dataset, as it shows the most optimal performance based on evaluation metrics 

including MSE, RMSE, R², and MAPE. The other models (RFR, SVR, and 

XGBoost) also demonstrated reasonably good performance, though not as strong 

as SARIMAX during the model building. 

  
(A) SARIMAX (B) SVR 

  
(C) RFR (D) XGBoost 

Figure 3 Prediction Model 

However, when testing each model using their best-tuned parameters for 

forecasting first semester 2024 data, the RFR model achieved the overall best 

performance, with the lowest MAPE of 4.10%, and the highest R² value of 

0.9686. This indicates a very strong and accurate predictive capability. XGBoost 

model competitively has a high R2 of 0.9626 and MAPE of 4.29%. a little bit 

higher than RFR model. 

On the other hand, SARIMAX failed to demonstrate good performance at both 

scales, as indicated by a negative R² value and a MAPE exceeding 28.14%, 

suggesting that the model was unable to capture the data patterns in the new 

dataset effectively, despite being the best-performing model during the initial 

model development phase, as shown in Table 5 and Figure 4. below. 
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Table 5 Evaluation metrics of 4 models in forecasting first semester 2024 data 

No Algorithm 
Model Performance 

MSE RMSE R2 MAPE 

1 SARIMAX 0.2015 0.4489 -0.664 28.14% 

2 RFR 0.0017 0.0415 0.9686 4.10% 

3 SVR 0.0216 0.1471 0.6057 21.12% 

4 XGBoost 0.002 0.0451 0.9629 4.29% 

 

  
(A) SARIMAX (B) SVR 

 
 

(C) RFR (D) XGBoost 

 

Figure 4 2024 First Semester Forecast 

A drastic and suspicious drop in SARIMAX performance was observed, with the 

R² value declining from 0.9919 during internal testing to -0.664 on out-of-sample 

data. This significant degradation strongly suggests a critical issue in the model's 

ability to generalize beyond the training distribution. A negative R² indicates that 

the model performs worse than a naive mean predictor, typically resulting when 

the residual sum of squares exceeds the total sum of squares.  

Several factors may explain this anomaly. First, SARIMAX is highly sensitive to 

data structure and may have overfitted to short-term seasonal or trend patterns 

specific to the training set. Second, the out-of-sample data likely exhibit different 

temporal dynamics or non-stationarities that the model was not exposed to during 

training. Third, SARIMAX assumes a degree of stationarity, and any structural 

shifts or noise in the test data can severely impact its accuracy.  
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Furthermore, the internal evaluation (Table 1) may have used a validation set that 

was too similar to the training data, thereby inflating performance metrics. 

Notably, while other models such as Random Forest, SVR, and XGBoost also 

experienced declines in performance on out-of-sample data, the magnitude was 

significantly smaller. Random Forest and XGBoost maintained high R² values 

(0.9686 and 0.9629, respectively), while SVR, although affected more strongly 

(R² = 0.6057, MAPE = 21.12%), still outperformed SARIMAX.  

These results underscore the importance of validating time series models on truly 

unseen data and highlight the advantages of using more adaptive or hybrid 

machine learning approaches in forecasting tasks involving complex, evolving 

data. 

4 Conclusion and Suggestion 

While SARIMAX excelled during the fitting process, XGBoost is more 

recommended for future predictions, as it proved to be superior in forecasting 

unseen data (first semester 2024). This is a crucial aspect for model deployment 

in actual prediction systems. 

Based on the analysis, it can be concluded that weather variables such as 

temperature and humidity, rainfall, and ENSO indicators play a significant role 

in influencing electricity production, particularly for renewable energy-based 

power plants like hydropower plant. These three groups of variables show 

correlated patterns, either directly or with time lags, indicating that climate 

conditions and global weather anomalies can have tangible impacts on energy 

availability and efficiency. Therefore, these variables are highly relevant and 

suitable as predictors in future electricity production forecasting models. 

For future research, it is recommended to include additional features such as land 

surface temperature index, wind speed, and others to further improve the model’s 

performance. It would also be beneficial to experiment with model combinations 

or hybrid approaches to enhance prediction accuracy even further.  
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