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Abstract. The primary challenge in Power System Operation Planning is the 

uncertainty in predicting electricity load. Inaccurate electricity demand forecasts 

can lead to issues such as resource wastage, increased operational costs, and 

supply failure risks. Traditionally, operational planning has relied on estimating 

load history using Microsoft Excel worksheets, with calculations based on load 

growth (%) from previous periods. This research aims to improve the accuracy of 

electricity load prediction for system operation planning at PT. PLN (Persero) 

Jayapura by utilizing deep learning models, specifically Recurrent Neural 

Network (RNN) and Long Short-Term Memory (LSTM). For model optimization, 

a grid search method was employed for hyperparameter tuning, ensuring the best 

performance in load forecasting. The study was conducted at PT. PLN (Persero) 

Jayapura, using daily electricity load data from January 2020 to August 2024, 

sourced from the SCADA (Supervisory Control and Data Acquisition) histori 

server. The results showed that the LSTM model outperformed the traditional 

RNN. While the RNN model achieved a Mean Absolute Error (MAE) of 1.106, a 

Root Mean Squared Error (RMSE) of 1.7650, and a Mean Absolute Percentage 

Error (MAPE) of 0.0142, the LSTM model demonstrated more accurate 

predictions with a MAE of 1.0047, RMSE of 1.6186, and MAPE of 0.0129. These 

findings demonstrate the potential of LSTM, enhanced by grid search 

optimization, for improving load forecasting accuracy and contributing to more 

reliable power system operation planning. 

Keywords: Deep Learning, Multilayer Perceptron, Long Short-Term Memory, 

Electricity Load Forecasting, System Operation Planning. 

1. Introduction 

Amidst global dynamics and increasingly intense economic competition, 

Indonesia has successfully maintained consistent economic growth. One of the 

key factors supporting economic growth is the rapid increase in electricity 

consumption across all sectors of society. Electricity, as a primary energy source, 
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serves as the backbone for the development of industry, business, and daily 

household life. 

To meet the community's electricity needs, PT. PLN (Persero) has undertaken 

upstream to downstream efforts to ensure system readiness across all regions in 

Indonesia, based on the Ministry of Energy and Mineral Resources Regulation of 

the Republic of Indonesia Number 20 of 2020 concerning the Grid Code of the 

Electric Power System [1]. 

One of the main challenges in Power System Operation Planning is the 

uncertainty in electricity load forecasting. The inability to accurately predict 

electricity demand can lead to various problems, such as resource waste, 

increased operational costs, and supply failure risks. Currently, PLN's approach 

to forecasting electricity demand relies on a statistical approach, which involves 

calculating load growth (%) from the previous period. 

Caicedo-Vivas et al. [2] demonstrated LSTM's superiority in short-term load 

forecasting for a Colombian grid operator, achieving a MAPE of 3.73%, 

outperforming methods like XGB. LSTM also proved robust in handling irregular 

data, reinforcing its reliability for dynamic and complex forecasting challenges. 

Deep learning is a branch of machine learning that uses multi-layer neural 

networks to automatically learn representations from raw data. This method has 

significantly improved performance in various tasks such as image recognition, 

speech recognition, natural language processing, and drug discovery. Unlike 

traditional machine learning, which relies on manually designed features, deep 

learning can uncover complex structures in high-dimensional data through a 

process called backpropagation, which enables training of complex models with 

minimal human intervention. In the context of natural language processing, deep 

learning utilizes neural networks, such as recurrent neural networks (RNN) and 

long short-term memory (LSTM) networks, to learn distributed word 

representations. These models can predict the next word in a sequence and 

perform tasks such as machine translation. The advantage of neural networks over 

traditional statistical methods is their ability to generalize across semantically 

related words [3]. 

This study aims to leverage deep learning, specifically LSTM, to improve 

electricity load forecasting accuracy. LSTM is a specialized type of recurrent 

neural network designed to capture patterns in sequential data, such as electricity 

load data. To optimize the performance of the LSTM model, the study utilizes 

grid search for hyperparameter tuning, ensuring the selection of the best model 

configuration for accurate predictions. 
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2. Recurrent Neural Network (LSTM) 

A Recurrent Neural Network (RNN) is a type of neural network specifically 

designed for processing sequential data, which is particularly useful for 

forecasting tasks. It maintains a 'state vector' in its hidden units that retains 

information about the history of all previous elements in the sequence. RNNs 

process input sequences one element at a time, allowing each output to depend 

on all prior inputs. This architecture is highly effective for tasks involving 

sequential inputs, such as time series forecasting, where the prediction of future 

values relies on the patterns learned from past data [3]. 

 

The diagram of the architecture illustrates a Recurrent Neural Network (RNN), 

where computations are performed sequentially over time, with each step 

depending on the previous input and the updated hidden state. At each time step 

t, the input xt is processed and produces an output ot, which depends on the entire 

sequence of previous inputs. The hidden state st at time t is influenced by the 

hidden state st-1 from the previous time step, enabling the RNN to retain temporal 

information. This architecture uses the same parameters (matrices U, V, W) at 

each time step, known as weight sharing, to process input and update the hidden 

state. The backpropagation through time (BPTT) algorithm is applied to compute 

error gradients and update the model's parameters, minimizing errors in 

predictions or classifications of the output. Additionally, there are RNN variants 

that generate output sequences, where the output at one step is used as the input 

for the next. 

3. Long Short-Term Memory (LSTM) 
 

Long Short-Term Memory (LSTM) is a type of artificial neural network 

architecture that falls under the category of Recurrent Neural Networks (RNN). 

LSTM is specifically designed to address the issues faced by RNNs in retaining 

long-term information in memory. [4]. LSTM has strong capabilities in predicting 

cases involving time-series data, one of which is forecasting electricity usage. 

Figure 1. Recurrent Neural Network (RNN) Architecture 
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The architecture of the LSTM model consists of three main components known 

as gates and one sub-component within a layer, or cell state. These components 

include the forget, input, and output gates, as well as the memory cell candidate, 

which is an additional part of the input gate. The gates function to control the 

flow of information by learning which input data in the sequence should be 

retained or discarded. The final information from the cell state is then passed to 

the next cell state and hidden node. Based on the architecture shown in Figure 1, 

the LSTM cell can be mathematically expressed as follows: 
 

ft = σ (Wf ∙ [ht−1, xt] +  bf                                         (1) 

it = σ (Wi ∙ [ht−1, xt] + bi                        (2) 

C̃t = tanh(WC ∙ [ht−1, xt] +  bC)       (3) 

Ct = ft  ∙  Ct−1 +  it  ∙  C̃t      (4) 

ot = σ (Wo ∙ [ht−1, xt] +  b0        (5) 

ht =  ot ∙  tanh(Ct)           (6) 
 

Where σ is the sigmoid function, tanh is the hyperbolic tangent function, and W 

and b represent the weights and biases learned during training. 

 

In the LSTM model, the Mean Squared Error (MSE) loss function is used to 

measure the accuracy of the model's predictions by comparing the predicted 

values with the actual values and calculating the average of the squared 

differences. With MSE, the model is penalized more heavily for larger errors, 

encouraging it to make predictions that are closer to the true values. The MSE 

equation is as follows: 
 

MSE =  
1

m
∑ (Yi − Ŷi)

2m
i=1                  (7) 

 

Figure 2. Long Short-Term Memory Architecture 
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Where Yi represents the actual value, Ŷi represents the predicted value and and m 

is the total number of data points. 

4. Evaluation Metrics 

The evaluation metrics in electricity load prediction using the LSTM model aim 

to measure the accuracy and reliability of the model in capturing complex and 

temporal energy consumption patterns. Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) are the 

three indicators used in this study to assess the accuracy of the LSTM model 

applied. [5]. 

MAE =
1

m
∑ |Yi − Ŷi|

m
i=1       (8) 

RMSE = √
1

m
∑ (Yi − Ŷi)

2m
i=1      (9) 

MAPE =
100

m
∑ |

Yi−Ŷi

Yi
|m

i=1       (10) 

In the formulas for MAE, RMSE, and MAPE, the variable Yi represents the actual 

or true value of the i-th data point, while Ŷi denotes the predicted value generated 

by the model for the i-th data point. The variable m indicates the total number of 

data points, or the sample size used in the calculations, representing the number 

of Yi and Ŷi pairs in the dataset. These variables help compute the average error 

between the predicted and actual values, reflecting the model’s accuracy. 
 

Mean Absolute Error (MAE) measures the average magnitude of prediction 

errors while disregarding their direction; it represents the average of the absolute 

differences between predicted and actual values in the test set, considering all 

differences equally weighted. Root Mean Squared Error (RMSE) calculates the 

square root of the average squared prediction errors, giving greater weight to 

larger errors, making it more sensitive to outliers compared to MAE. Mean 

Absolute Percentage Error (MAPE) is a relative metric that expresses the average 

value of the relative errors as a percentage of the actual data. 

5. Hyperparameter Tuning 

Hyperparameter tuning refers to the process of selecting the most effective set of 

parameters that control the learning process during model training. These 

parameters, such as the learning rate, batch size, and optimizer, significantly 

influence how well the model learns from the data. The goal of tuning is to find 

the optimal combination that minimizes error and improves model performance. 

This process involves systematically adjusting these parameters and evaluating 
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the model's performance to identify the configuration that results in the most 

accurate predictions. Table 1 presents the values used in the hyperparameter 

tuning process. 
Table 1. Hyperparameter Value 

Combination Value 

Optimizer {Adam; RMSprop} 

Learning Rate {0,001; 0,0001} 

Batch Size {8; 16; 32} 

6. Data and Model 

In this study, the methodology begins with collecting electricity load data from 

the SCADA historical server at PT PLN (Persero) Jayapura, covering the period 

from 2020 to August 2024. The collected dataset consists of 1,705 rows and 49 

columns, with each feature representing a 30-minute interval over a 24-hour 

period. The next stage is data preprocessing, which involves normalizing the data 

to a range between 0 and 1. This normalization is intended to facilitate the model 

training process. 
 

The dataset is then divided into two parts: 90% of the data is used for training 

(from January 2020 to December 2023), and the remaining 10% is used for 

evaluation (from January 2024 to August 2024). In the model training phase, the 

Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) model 

architectures are built by specifying the number of units, activation functions, and 

additional layers as needed, as shown in Table 2. 

 
Table 2. Model Architecture 

Model : Sequential 

Layer Output Shape Param # Activation 

LSTM (None, 100) 40400 
Internal 

(Tanh, Sigmoid) 
LSTM (None, 50) 30000 

Dense (None, 1) 51 

7. Results and Analysis 

Both the RNN and LSTM models underwent hyperparameter tuning using grid 

search to identify the best-performing model. The results of the modeling are 

presented in Table 3. 
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Table 3. Hyperparameter Tuning Results for RNN and LSTM Models 

RNN 

Optimizer Batch Size 
Learning 

Rate 
MAE RMSE MAPE 

Adam 8 0.0001 0.014 0.023 0.021 

LSTM 

Optimizer Batch Size 
Learning 

Rate 
MAE RMSE MAPE 

RMSprop 32 0.001 0.016 0.025 0.024 

 

The best model obtained was used for testing data. The testing results reveal a 

downward trend in Loss and Validation Loss, indicating that the RNN and LSTM 

models successfully learned from the data, as shown in Figure 3. This decline 

suggests that the model effectively minimized errors over time, achieving 

improved performance and stability across both training and validation datasets. 
 

  

Initially, the loss decreased rapidly, indicating that the model was learning 

effectively; however, after several epochs, the loss began to stabilize, signifying 

that the model had reached a point of convergence or stability in training. This 

pattern suggests that the model had successfully captured the underlying data 

patterns and was no longer making significant adjustments, indicating that further 

training would likely not yield substantial improvement in performance. 
 

Figure 3. Training Loss & Validation Loss 
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Figure 4. Performance Comparison of RNN and LSTM Models 

 
Figure 5. Daily maximum load values 

Figure 4 shows the test results comparing the actual electricity load (blue) and 

the predicted load generated by the RNN model (orange) an LSTM model (green) 

in megawatts (MW) and Figure 5 shows the daily maximum load values . The X-

axis represents the time index of the predicted data, while the Y-axis represents 

the electricity load values, ranging from approximately 60 to 100 MW. The test 

results demonstrate the models' ability to closely follow the pattern of actual 

values, with strong evaluation metrics. The RNN model achieved a Mean 

Absolute Error (MAE) of 1.106, Root Mean Squared Error (RMSE) of 1.7650, 

and Mean Absolute Percentage Error (MAPE) of 0.0142. Meanwhile, the LSTM 
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model performed slightly better with a MAE of 1.0047, RMSE of 1.6186, and 

MAPE of 0.0129.. 

8. Conclusion 

Based on the test results, the Long Short-Term Memory (LSTM) model 

outperforms the Recurrent Neural Network (RNN) model in terms of accuracy. 

The LSTM achieved a lower Mean Absolute Error (MAE) of 1.0047, compared 

to RNN's MAE of 1.106, indicating that the LSTM model is more accurate in 

predicting electricity load. Similarly, the LSTM showed a lower Root Mean 

Squared Error (RMSE) of 1.6186, whereas the RNN had a higher RMSE of 

1.7650, further demonstrating the superior predictive accuracy of the LSTM. 

Additionally, the LSTM achieved a lower Mean Absolute Percentage Error 

(MAPE) of 0.0129 compared to RNN's MAPE of 0.0142, which signifies better 

performance in minimizing the percentage error between the predicted and actual 

values. These results suggest that the LSTM model is more optimal for electricity 

load forecasting, as it is better equipped to capture and model complex temporal 

dependencies, leading to more reliable and precise predictions.. 
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