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Abstract. The primary challenge in Power System Operation Planning is the
uncertainty in predicting electricity load. Inaccurate electricity demand forecasts
can lead to issues such as resource wastage, increased operational costs, and
supply failure risks. Traditionally, operational planning has relied on estimating
load history using Microsoft Excel worksheets, with calculations based on load
growth (%) from previous periods. This research aims to improve the accuracy of
electricity load prediction for system operation planning at PT. PLN (Persero)
Jayapura by utilizing deep learning models, specifically Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM). For model optimization,
a grid search method was employed for hyperparameter tuning, ensuring the best
performance in load forecasting. The study was conducted at PT. PLN (Persero)
Jayapura, using daily electricity load data from January 2020 to August 2024,
sourced from the SCADA (Supervisory Control and Data Acquisition) histori
server. The results showed that the LSTM model outperformed the traditional
RNN. While the RNN model achieved a Mean Absolute Error (MAE) of 1.106, a
Root Mean Squared Error (RMSE) of 1.7650, and a Mean Absolute Percentage
Error (MAPE) of 0.0142, the LSTM model demonstrated more accurate
predictions with a MAE of 1.0047, RMSE of 1.6186, and MAPE of 0.0129. These
findings demonstrate the potential of LSTM, enhanced by grid search
optimization, for improving load forecasting accuracy and contributing to more
reliable power system operation planning.
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1. Introduction

Amidst global dynamics and increasingly intense economic competition,
Indonesia has successfully maintained consistent economic growth. One of the
key factors supporting economic growth is the rapid increase in electricity
consumption across all sectors of society. Electricity, as a primary energy source,
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serves as the backbone for the development of industry, business, and daily
household life.

To meet the community's electricity needs, PT. PLN (Persero) has undertaken
upstream to downstream efforts to ensure system readiness across all regions in
Indonesia, based on the Ministry of Energy and Mineral Resources Regulation of
the Republic of Indonesia Number 20 of 2020 concerning the Grid Code of the
Electric Power System [1].

One of the main challenges in Power System Operation Planning is the
uncertainty in electricity load forecasting. The inability to accurately predict
electricity demand can lead to various problems, such as resource waste,
increased operational costs, and supply failure risks. Currently, PLN's approach
to forecasting electricity demand relies on a statistical approach, which involves
calculating load growth (%) from the previous period.

Caicedo-Vivas et al. [2] demonstrated LSTM's superiority in short-term load
forecasting for a Colombian grid operator, achieving a MAPE of 3.73%,
outperforming methods like XGB. LSTM also proved robust in handling irregular
data, reinforcing its reliability for dynamic and complex forecasting challenges.

Deep learning is a branch of machine learning that uses multi-layer neural
networks to automatically learn representations from raw data. This method has
significantly improved performance in various tasks such as image recognition,
speech recognition, natural language processing, and drug discovery. Unlike
traditional machine learning, which relies on manually designed features, deep
learning can uncover complex structures in high-dimensional data through a
process called backpropagation, which enables training of complex models with
minimal human intervention. In the context of natural language processing, deep
learning utilizes neural networks, such as recurrent neural networks (RNN) and
long short-term memory (LSTM) networks, to learn distributed word
representations. These models can predict the next word in a sequence and
perform tasks such as machine translation. The advantage of neural networks over
traditional statistical methods is their ability to generalize across semantically
related words [3].

This study aims to leverage deep learning, specifically LSTM, to improve
electricity load forecasting accuracy. LSTM is a specialized type of recurrent
neural network designed to capture patterns in sequential data, such as electricity
load data. To optimize the performance of the LSTM model, the study utilizes
grid search for hyperparameter tuning, ensuring the selection of the best model
configuration for accurate predictions.
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2. Recurrent Neural Network (LSTM)

A Recurrent Neural Network (RNN) is a type of neural network specifically
designed for processing sequential data, which is particularly useful for
forecasting tasks. It maintains a 'state vector' in its hidden units that retains
information about the history of all previous elements in the sequence. RNNs
process input sequences one element at a time, allowing each output to depend
on all prior inputs. This architecture is highly effective for tasks involving
sequential inputs, such as time series forecasting, where the prediction of future
values relies on the patterns learned from past data [3].
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Figure 1. Recurrent Neural Network (RNN) Architecture

The diagram of the architecture illustrates a Recurrent Neural Network (RNN),
where computations are performed sequentially over time, with each step
depending on the previous input and the updated hidden state. At each time step
t, the input x: is processed and produces an output o, which depends on the entire
sequence of previous inputs. The hidden state s; at time t is influenced by the
hidden state s.; from the previous time step, enabling the RNN to retain temporal
information. This architecture uses the same parameters (matrices U, V, W) at
each time step, known as weight sharing, to process input and update the hidden
state. The backpropagation through time (BPTT) algorithm is applied to compute
error gradients and update the model's parameters, minimizing errors in
predictions or classifications of the output. Additionally, there are RNN variants
that generate output sequences, where the output at one step is used as the input
for the next.

3. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of artificial neural network
architecture that falls under the category of Recurrent Neural Networks (RNN).
LSTM is specifically designed to address the issues faced by RNNs in retaining
long-term information in memory. [4]. LSTM has strong capabilities in predicting
cases involving time-series data, one of which is forecasting electricity usage.
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Figure 2. Long Short-Term Memory Architecture

The architecture of the LSTM model consists of three main components known
as gates and one sub-component within a layer, or cell state. These components
include the forget, input, and output gates, as well as the memory cell candidate,
which is an additional part of the input gate. The gates function to control the
flow of information by learning which input data in the sequence should be
retained or discarded. The final information from the cell state is then passed to
the next cell state and hidden node. Based on the architecture shown in Figure 1,
the LSTM cell can be mathematically expressed as follows:

fo = o (W [he—q, ] + b (1)
ii=o0 (Wi * [he—q, %] + by 2)
Ct = tanh(We * [he—,%¢] + bc) ©)

Co="f - Ceoq + iy - G (4)
o = 0 (W, * [he—1,x¢] + bg (5)
h; = o; - tanh(Cy) (6)

Where ¢ is the sigmoid function, tanh is the hyperbolic tangent function, and W
and b represent the weights and biases learned during training.

In the LSTM model, the Mean Squared Error (MSE) loss function is used to
measure the accuracy of the model's predictions by comparing the predicted
values with the actual values and calculating the average of the squared
differences. With MSE, the model is penalized more heavily for larger errors,
encouraging it to make predictions that are closer to the true values. The MSE
equation is as follows:

MSE = i m(%-1)° (7)
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Where Y; represents the actual value, Y; represents the predicted value and and m
is the total number of data points.

4. Evaluation Metrics

The evaluation metrics in electricity load prediction using the LSTM model aim
to measure the accuracy and reliability of the model in capturing complex and
temporal energy consumption patterns. Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) are the
three indicators used in this study to assess the accuracy of the LSTM model
applied. [5].
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In the formulas for MAE, RMSE, and MAPE, the variable Y; represents the actual
or true value of the i-th data point, while Y; denotes the predicted value generated
by the model for the i-th data point. The variable m indicates the total number of
data points, or the sample size used in the calculations, representing the number
of Y; and Y, pairs in the dataset. These variables help compute the average error
between the predicted and actual values, reflecting the model’s accuracy.

Mean Absolute Error (MAE) measures the average magnitude of prediction
errors while disregarding their direction; it represents the average of the absolute
differences between predicted and actual values in the test set, considering all
differences equally weighted. Root Mean Squared Error (RMSE) calculates the
square root of the average squared prediction errors, giving greater weight to
larger errors, making it more sensitive to outliers compared to MAE. Mean
Absolute Percentage Error (MAPE) is a relative metric that expresses the average
value of the relative errors as a percentage of the actual data.

5.  Hyperparameter Tuning

Hyperparameter tuning refers to the process of selecting the most effective set of
parameters that control the learning process during model training. These
parameters, such as the learning rate, batch size, and optimizer, significantly
influence how well the model learns from the data. The goal of tuning is to find
the optimal combination that minimizes error and improves model performance.
This process involves systematically adjusting these parameters and evaluating
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the model's performance to identify the configuration that results in the most
accurate predictions. Table 1 presents the values used in the hyperparameter
tuning process.

Table 1. Hyperparameter Value

Combination Value
Optimizer {Adam; RMSprop}

Learning Rate {0,001; 0,0001}
Batch Size {8; 16; 32}

6. Data and Model

In this study, the methodology begins with collecting electricity load data from
the SCADA historical server at PT PLN (Persero) Jayapura, covering the period
from 2020 to August 2024. The collected dataset consists of 1,705 rows and 49
columns, with each feature representing a 30-minute interval over a 24-hour
period. The next stage is data preprocessing, which involves normalizing the data
to a range between 0 and 1. This normalization is intended to facilitate the model
training process.

The dataset is then divided into two parts: 90% of the data is used for training
(from January 2020 to December 2023), and the remaining 10% is used for
evaluation (from January 2024 to August 2024). In the model training phase, the
Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) model
architectures are built by specifying the number of units, activation functions, and
additional layers as needed, as shown in Table 2.

Table 2. Model Architecture

Model : Sequential

Layer Output Shape Param # Activation
LSTM (None, 100) 40400
Internal
LSTM N
S (None, 50) 30000 (Tanh, Sigmoid)
Dense (Noneg, 1) 51

7. Results and Analysis

Both the RNN and LSTM models underwent hyperparameter tuning using grid
search to identify the best-performing model. The results of the modeling are
presented in Table 3.
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Table 3. Hyperparameter Tuning Results for RNN and LSTM Models

RNN
Optimizer | Batch Size Le;;"t‘éng MAE RMSE MAPE
Adam 8 0.0001 0.014 0.023 0.021
LSTM
Optimizer | Batch Size Le;;"t‘éng MAE RMSE MAPE
RMSprop 32 0.001 0.016 0.025 0.024

The best model obtained was used for testing data. The testing results reveal a
downward trend in Loss and Validation Loss, indicating that the RNN and LSTM
models successfully learned from the data, as shown in Figure 3. This decline
suggests that the model effectively minimized errors over time, achieving
improved performance and stability across both training and validation datasets.

Training and Validation Loss - RNN vs LSTM
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—— LSTM Training Loss

—— LSTM Validation Loss
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Figure 3. Training Loss & Validation Loss

Initially, the loss decreased rapidly, indicating that the model was learning
effectively; however, after several epochs, the loss began to stabilize, signifying
that the model had reached a point of convergence or stability in training. This
pattern suggests that the model had successfully captured the underlying data
patterns and was no longer making significant adjustments, indicating that further
training would likely not yield substantial improvement in performance.
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Load Forecasting Jayapura System - RNN vs LSTM
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Figure 4. Performance Comparison of RNN and LSTM Models
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Figure 5. Daily maximum load values

Figure 4 shows the test results comparing the actual electricity load (blue) and
the predicted load generated by the RNN model (orange) an LSTM model (green)
in megawatts (MW) and Figure 5 shows the daily maximum load values . The X-
axis represents the time index of the predicted data, while the Y -axis represents
the electricity load values, ranging from approximately 60 to 100 MW. The test
results demonstrate the models' ability to closely follow the pattern of actual
values, with strong evaluation metrics. The RNN model achieved a Mean
Absolute Error (MAE) of 1.106, Root Mean Squared Error (RMSE) of 1.7650,
and Mean Absolute Percentage Error (MAPE) of 0.0142. Meanwhile, the LSTM
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model performed slightly better with a MAE of 1.0047, RMSE of 1.6186, and
MAPE of 0.0129..

8. Conclusion

Based on the test results, the Long Short-Term Memory (LSTM) model
outperforms the Recurrent Neural Network (RNN) model in terms of accuracy.
The LSTM achieved a lower Mean Absolute Error (MAE) of 1.0047, compared
to RNN's MAE of 1.106, indicating that the LSTM model is more accurate in
predicting electricity load. Similarly, the LSTM showed a lower Root Mean
Squared Error (RMSE) of 1.6186, whereas the RNN had a higher RMSE of
1.7650, further demonstrating the superior predictive accuracy of the LSTM.
Additionally, the LSTM achieved a lower Mean Absolute Percentage Error
(MAPE) of 0.0129 compared to RNN's MAPE of 0.0142, which signifies better
performance in minimizing the percentage error between the predicted and actual
values. These results suggest that the LSTM model is more optimal for electricity
load forecasting, as it is better equipped to capture and model complex temporal
dependencies, leading to more reliable and precise predictions..
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