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Abstract. This study evaluates and compares the performance of three Machine 

Learning models—RNN, LSTM, and Transformer—for forecasting lightning 

strikes that can disrupt transmission towers along the 150 kV Bukit Asam - 

Baturaja line. Using historical lightning data from 2018 to 2024, the models were 

trained and validated, with the Transformer model demonstrating superior 

predictive accuracy.The Transformer model achieved an impressive R-squared 

value of 0.9543, significantly surpassing the performance of both the Recurrent 

Neural Network and the Long Short-Term Memory models. The Transformer 

model is a dependable option for predictions, as its self-attention mechanism 

efficiently identifies dependency patterns and trends. However, the study is limited 

to this specific region and dataset, highlighting the need for future research to 

incorporate additional variables, such as meteorological and geographical factors, 

for improved adaptability. The findings underscore the importance of accurate and 

efficient forecasting models to support proactive measures and mitigate lightning-

induced disturbances on transmission infrastructure.chnology for risk mitigation 

in electrical transmission networks. 

Keywords: Transformer model, RNN, LSTM, lightning strike forecasting, transmission 

tower, time-series prediction 

1 Introduction 

Within the Sumatera region of PT PLN UIP3B, lightning disturbances pose a 

significant threat to the electrical system. These disturbances not only disrupt the 

smooth distribution of power but also cause various hazards and substantial losses. 

Lightning disturbances often result in power outages, halting industrial, 

commercial, and household activities. This leads to significant economic losses 

and disrupts the comfort of the community. Improving the reliability of electrical 

transmission is thus a top priority for PT PLN UIP3B Sumatera, aiming to ensure 

a stable and reliable electricity supply for all customers. 
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PLN customers are entitled to quality and reliable electricity services. Recurring 

lightning disturbances can reduce customer satisfaction and damage the 

company's reputation. By enhancing the reliability of electrical transmission 

through lightning disturbance mitigation, PT PLN UIP3B Sumatera can provide 

better service to its customers. Additionally, lightning disturbances not only cause 

power outages but also lead to damage to transmission network infrastructure, 

such as towers, cables, and transformers. This damage incurs significant repair 

costs and downtime, disrupting the operational efficiency of the electrical system. 

Furthermore, lightning strikes pose a danger to human life, affecting both PLN 

personnel and the general public. 

Efforts to mitigate lightning disturbances have traditionally focused on physical 

solutions, such as installing lightning arresters and grounding systems. These 

methods aim to protect the network infrastructure from direct lightning strikes 

and to dissipate the resulting current safely into the ground. While these measures 

have proven effective to a certain extent, they are primarily reactive and limited 

in their ability to predict and proactively address lightning risks. Previous studies 

have emphasized the importance of understanding lightning patterns and 

implementing predictive strategies to mitigate potential damage [19]. However, 

the adoption of predictive approaches, particularly those leveraging advanced 

machine learning techniques, remains limited in this context. 

Recent advancements in machine learning offer promising solutions for 

predicting lightning strikes and mitigating their impact. Models such as Recurrent 

Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks have 

been widely applied to time-series forecasting tasks. However, their ability to 

capture long-term dependencies is constrained by their sequential nature and 

vanishing gradient issues [3]. The Transformer model, which leverages a self-

attention mechanism to process entire sequences concurrently, has demonstrated 

superior performance in a variety of domains, including natural language 

processing and energy demand forecasting. Despite its potential, the application 

of the Transformer model in lightning strike prediction remains underexplored. 

This study aims to address this gap by evaluating and comparing the performance 

of RNN, LSTM, and Transformer models in predicting lightning strikes that 

could disrupt electrical transmission towers along the 150 kV Bukit Asam-

Baturaja line. Using historical lightning data from 2018 to 2024, this research 

highlights the capabilities of the Transformer model in identifying dependency 

patterns and trends more effectively than traditional methods. The findings 

contribute to the development of predictive strategies that not only enhance the 

reliability of electrical transmission but also support proactive mitigation 

measures, ensuring the safety and stability of the network. 
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Through this work, we aim to bridge the gap between conventional lightning 

mitigation strategies and advanced predictive methodologies, demonstrating how 

machine learning can be effectively utilized to forecast lightning disturbances in 

a region prone to extreme weather conditions. 

2 Methodology 

The following steps comprise the approach employed in this study to create a 

lightning strike prediction model for electrical transmission networks : data 

collection, data processing, machine learning model development, and model 

performance evaluation. For more understanding, the research work describes in 

Figure 1 below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Flowchart of Research Study. 

2.1 Study Area 

This research focuses on a critical segment of the electrical transmission 

infrastructure in Sumatra, which experiences significant challenges due to 

lightning disturbances. By concentrating on a specific area, the study intends to 

give a detailed evaluation of the historical trends of lightning strikes affecting the 

SUTT 150 kV Bukit Asam - Baturaja segment. 

2.2 Data 

The methodology involves the comprehensive collection of lightning strike data 

from VAISALA's FALLS application, which is designed to provide accurate real-

time lightning detection and tracking. FALLS (Fast Acquisition of Lightning 

Location System) utilizes advanced sensor technology to monitor and analyze 

lightning strikes, offering detailed information on the frequency, location, and 

characteristics of lightning events. For this study, historical lightning strike data 

was collected over the period from January 2018 to June 2024, allowing for a 
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thorough examination of lightning occurrences across the specified transmission 

tower locations along the SUTT 150 kV Bukit Asam - Baturaja line. 

 

This focused analysis provides a robust foundation for understanding the impact 

of lightning on transmission reliability and serves as a basis for developing 

predictive models aimed at mitigating disruptions. By leveraging the precise data 

from the FALLS application, the study can effectively correlate lightning activity 

with historical disturbances in the transmission network. 

 

While acknowledging the influence of weather conditions and atmospheric 

factors, this study intentionally excludes an extensive analysis of these variables 

to maintain a clear focus on the lightning data itself. It is anticipated that the 

research's conclusions will provide important new information about how to 

strengthen the electrical transmission network's resistance to lightning-caused 

disruptions in the area, increasing operational resilience and guaranteeing a 

steady supply of electricity for consumers. 

2.3 Machine Learning 

This study explores the effectiveness of three models—Transformer, Recurrent 

Neural Network (RNN), and Long Short-Term Memory (LSTM)—in forecasting 

the timing of lightning strikes, drawing on methodologies established in previous 

time series forecasting research. [1], [2]. The study utilizes evaluation metrics 

such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean 

Absolute Percentage Error (MAPE), and R-squared (R²). These criteria, grounded 

in established best practices from previous research, ensure a thorough and 

reliable comparison of model performance [4], focusing on identifying the most 

suitable model architecture for this specific application. This selection of metrics 

provides a holistic assessment, considering both the magnitude and percentage of 

prediction errors, as well as the overall goodness of fit. 

2.3.1 Normalizer  

In order to minimize model mistakes, normalization is used, which involves 

shrinking the dataset's scale without erasing its values. The dataset is normalized 

in this study using the Min-Max approach.   

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑟 = (𝑥−min)/(max − 𝑚𝑖𝑛) (2)  

 

As a data standardization method, Min-Max is well-known and widely used. 

Unfortunately, this method discards negative values after processing the dataset 

into a specific range (from 0 to 1). Improving the Machine Learning model's 

accuracy is the reason behind normalizing the dataset.  [5] 
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2.3.1 Recurrent neural networks (RNN) 

Time series, NLP, and speech recognition are just a few examples of applications 

that demand for NNs with recurrent neural networks (RNNs) built in. Connecting 

the hidden units of NNs back to themselves with a temporal delay is the basic 

principle [6]. By feeding the hidden units themselves, the network effectively 

gains a dynamic memory, as they learn to represent the raw input features. 

Importantly, the network's weights are shared between timesteps, meaning the 

same network is used for every timestep. The idea of weight-sharing is similar to 

convolutional neural networks (CNNs), which use the same filter in several input 

segments. This not only allows RNNs to train on sequences of varying lengths, 

but it also lets them generalize to lengths that weren't present during training. 

Figure 2 depicts the overall architecture of an RNN (unrolled). 

 

 

Figure 2 Machine Learning, RNN model Architecture (adapted from [20]) 

With an input vector X, the RNN scans the data progressively from left to right, 

updating the hidden state and providing an output at each time step. The network 

then uses this information to build an output vector y. All time steps use the same 

settings. This indicates that the parameters U, V, and W are always used in the 

same way by the network. W stands for the weight associated with the link 

between hidden layers, U for the connection from input layer X to hidden layer 

h, and V for the connection from hidden layer h to output layer y. Because it is 

able to store information from earlier inputs in its present hidden state, RNNs can 

process sequential data more quickly and capture temporal relationships more 

effectively thanks to parameter sharing. 

2.3.2 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks represent an advanced evolution of 

Recurrent Neural Networks (RNNs), specifically designed to effectively capture 

long-term dependencies in sequential data. Introduced in 1997 and further refined 

in 2013, LSTMs have become highly regarded within the deep learning 
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community. Unlike standard RNNs, LSTMs excel at retaining and leveraging 

information from longer sequences, making them superior for tasks requiring 

extended memory and context. An LSTM network's LSTM unit processes both 

the input and output from the previous time step in a given time step. The output 

from this unit is then passed on to the time step after that. Classification problems 

commonly employ the latest hidden layer from the previous time step, or all 

hidden layers together [12]. Figure 3 illustrates the detailed architecture of a Long 

Short-Term Memory (LSTM) network. Each LSTM unit consists of three key 

components: an input gate, a forget gate, and an output gate, each with a distinct 

role in managing the flow of information. The input gate evaluates the current 

input and the previous internal state to determine how to update the internal state. 

The forget gate plays a crucial role in deciding the extent to which information 

from the previous internal state is discarded. Lastly, the output gate regulates how 

the internal state ultimately influences the network’s output. 

 

 

Figure 3. (a) The architecture of a standard LSTM (adapted from [11]). (b) Inner 

structure of LSTM (adapted from [10]). 

2.3.3 Transformer 

Transformers have exhibited adaptability, producing competitive results in 

domains beyond natural language processing, including time series modeling [13]. 

Unlike RNNs, which handle sequences step by step, transformers process entire 

sequences simultaneously using a combination of attention mechanisms and feed-

forward layers. Attention blocks generate an output sequence by calculating 

weighted sums of transformed input elements, allowing information to flow 

across the sequence dimension. Elements with higher importance are assigned 

greater weights, emphasizing their significance. Meanwhile, the feed-forward 

block adds non-linearity to the transformer layer by applying a uniform operation 

to each element in the sequence. 

 

Feed-forward blocks function as position-specific operations, independently 

applied to each position within the sequence. In contrast, attention blocks 

facilitate interactions across positions, enabling the exchange of information 

between them. [14] 
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The original transformer employs dot product attention to calculate pairwise 

weights between all elements within a given sequence. However, this approach 

requires quadratic memory to store intermediate weights, which limits its 

scalability for longer input sequences. Since its inception, numerous adaptations 

have been developed to enhance the transformer's effectiveness, particularly for 

time series applications. These improvements are categorized based on the 

specific components or methods they modify, including positional encoding, 

attention mechanisms, convolution, gating, and dense interpolation[15].   

 

Positional encoding is essential in transformers for embedding positional 

information into the model, ensuring it can differentiate between sequence 

positions. Without this mechanism, position-wise operations would be ineffective. 

The original transformer employed cosine-based positional encoding, which 

represents the absolute positions of data points by calculating cosines at varying 

frequencies for their angular positions. However, relative positional encodings 

have been proposed, emphasizing the importance of the distance between 

elements to improve performance [16]. For time series modeling, timestamp-

based positional encoding is particularly relevant, as it conveys critical date and 

time details. This approach is especially useful for datasets like energy 

consumption or consumer pricing, where seasonal patterns tied to calendar dates 

and local time are significant [17]. 

 

The transformer introduced by Vaswani et al. [18] in 2017 aimed to address the 

challenges of neural machine translation. Figure 3 illustrates the transformer 

architecture. 

3 Result 

3.1 Preprocessing Data 

The graph above shows lightning strike data collected from the tower segment of 

the 150 kV Bukit Asam - Baturaja transmission line, spanning the period from 

2018 to 2024. Data preprocessing included converting the date column to a 

datetime format, which includes the year, month, day, and hour, to allow for more 

effective time-based analysis and feature extraction.. This preprocessing aims to 

ready the data for a forecasting model designed to predict future lightning strikes, 

ensuring that patterns and trends in the time series data are accurately captured 

and effectively utilized. 
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Figure 4. Transformer model Architecture. (adapted from [18]) 

 
Figure 5. Data Time Series of Lightning Strike. 

3.2 Data Exploration 

 

 

 

 

 

 

 

 

 

 

Figure 6. Data Exploration. 
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The image above presents an exploration of lightning strike data collected from 

the tower segment of the 150 kV Bukit Asam - Baturaja transmission line. The 

data spans from 2018 to mid-2024 and is decomposed into its components: trend, 

seasonality, and residuals. The decomposition reveals a clear trend in the 

lightning strike counts over time, while the seasonal and residual components 

appear minimal or flat, indicating a lack of strong seasonality in the data. This 

analysis helps in understanding the underlying patterns and is crucial for 

developing an effective forecasting model for future lightning strikes. 

3.3 Data Splitting for Training the Model 

To ensure the robustness and reliability of the machine learning models, an 

essential step in the modeling process is splitting the dataset into subsets for 

training and testing purposes. This step is crucial to evaluate the model's ability 

to generalize to unseen data and avoid overfitting. By creating separate datasets 

for training and validation/testing, the model's performance can be accurately 

assessed under conditions that mimic real-world scenarios. The following section 

describes the approach used to partition the dataset and the rationale behind the 

chosen splitting strategy. 

 

The dataset was divided into training and validation/testing sets to evaluate the 

performance of the models. A standard 80-20 split was used, where 80% of the 

data was allocated for training and 20% for validation and testing. The training 

data was used to optimize the model parameters, while the validation/testing data 

was reserved to assess the model's ability to generalize to unseen data. This 

approach ensures a robust evaluation of the models while minimizing the risk of 

overfitting. 

3.4 Hyperparameter Configuration 

To effectively compare the performance of RNN, LSTM, and Transformer 

models, distinct hyperparameter configurations were tailored for each model 

based on their architecture and computational requirements. The configurations 

aim to balance model complexity, training efficiency, and predictive accuracy. 

The following table provides a visual comparison of the hyperparameter settings, 

including the number of layers, units per layer or model dimension, batch size, 

and learning rate, to highlight the differences and rationale behind the choices. 

a. Number of Layers per Model: 

The Transformer model has the highest number of layers (4), while both RNN 

and LSTM models use 2 layers. This additional depth in the Transformer 

allows it to capture more complex patterns and long-term dependencies within 

the data. 
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Table 1 Hyperparameter configuration. (created by the authors) 

Hyperparameter RNN LSTM Transformer 

Number of Layers 2 2 4 

Units per Layer 50 100 - 

Attention Heads - - 8 

Model Dimension - - 256 

Feed-forward Dim - - 512 

Activation Function ReLU Tanh ReLU 

Learning Rate 0.001 (Adam) 0.001 (Adam) 0.0001 (Adam) 

Batch Size 32 32 16 

Epochs 100 100 50 

Dropout Rate - 0.2 0.1 

b. Units per Layer / Model Dimension: 

RNN and LSTM have 50 and 100 units per layer, respectively. In contrast, the 

Transformer employs a model dimension of 256, which represents its ability 

to process and encode richer features through each layer, making it more 

powerful for complex datasets. 

c. Batch Size per Model: 

The batch size used for the Transformer is smaller (16) compared to RNN 

and LSTM (32). This choice is due to the higher computational cost of the 

Transformer, which requires smaller batches to maintain efficient training. 

d. Learning Rate per Model: 

The Transformer uses a smaller learning rate (0.0001) compared to RNN and 

LSTM (0.001). This is necessary to stabilize the training process for the more 

complex Transformer architecture and avoid overshooting during 

optimization. 

3.5 Evaluating Model 

The graph presented illustrates the efficacy of the RNN model in forecasting 

lightning strikes. The blue line illustrates the predictions generated by the model, 

whereas the orange line denotes the actual observed values. Significant 

differences between expected and actual values suggest that the RNN model has 

trouble seeing patterns in the data, which causes it to make inaccurate predictions. 

This underscores the model's constraints in effectively predicting lightning strikes 

for this dataset. 
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Figure 7. Evaluating Model of RNN Model. 

 

 

Figure 8. Evaluating Model of LSTM Model. 

The graph demonstrates the efficacy of the LSTM model in forecasting lightning 

strikes. The blue line illustrates the predictions made by the model, while the 

orange line depicts the actual values observed. Although the LSTM model 

demonstrates a marginally superior performance compared to the RNN, it 

continues to struggle with accurately tracking the actual data patterns, particularly 

during peak periods. The model effectively identifies certain trends, but it fails to 

reliably forecast abrupt variations in lightning strikes, as seen by the disparities 

between the projected and real numbers. 
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Figure 9. Evaluating Model of Transformer Model.  

The graph demonstrates the efficacy of the Transformer model in predicting 

lightning strikes. The blue line represents the actual values, while the orange line 

indicates the projected values. The Transformer model demonstrates remarkable 

accuracy, precisely matching the actual data patterns and effectively capturing 

both peaks and variations. The little discrepancies noted between the predicted 

and real values highlight the model's strong capacity to predict lightning strikes, 

establishing it as the most reliable choice compared to alternatives like RNN and 

LSTM. 

3.6 Model Evaluation Comparison 

Table 2 Summary of parameters.  

While the Transformer model demonstrates superior performance with 

significantly lower MSE, MAE, and RMSE compared to RNN and LSTM, its 

MAPE is observed to be higher than that of RNN. This discrepancy can be 

attributed to the sensitivity of MAPE to data points with small actual values. 

MAPE calculates the percentage error by dividing the absolute error by the actual 

value, which causes even small absolute errors to result in disproportionately high 

percentage errors when the actual values are close to zero. 

 

Model 
R-squared  

(R2) 

Mean Squared 

Error  

(MSE) 

Mean 

Absolute Error  

(MAE) 

Root Mean 

Squared Error  

(RMSE) 

Mean Absolute 

Percentage Error  

(MAPE) 

RNN -0.0766 255.228 33.515 50.521 93.176 

LSTM 0.0112 102.809 24.669 32.069 817.662 

Transformer 0.9543 0.3957 0.4467 0.6291 224.888 
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In this study, the dataset includes a considerable number of zero or near-zero 

values, particularly during dry seasons when lightning activity is minimal. As a 

result, these periods with low or no lightning frequency amplify the MAPE, even 

though the Transformer exhibits superior predictive accuracy overall. In contrast, 

metrics such as MSE, MAE, and RMSE measure errors on an absolute scale, 

making them less affected by the magnitude of the actual values. Consequently, 

the higher MAPE value for the Transformer does not necessarily reflect its overall 

performance but rather highlights its sensitivity to these specific conditions in the 

dataset. 

 

The table provides a detailed comparison of three forecasting models—RNN, 

LSTM, and Transformer—using several performance metrics to assess their 

effectiveness. 

a. R-squared (R²) Comparison: 

• RNN: With an R² value of -0.0766, the RNN model struggles 

significantly to capture the variance in the data, suggesting that it does 

not perform well in this forecasting task. 

• LSTM: Shows slight improvement with an R² value of 0.0112, but it still 

explains very little of the data's variability, indicating that the model has 

room for enhancement. 

• Transformer: Stands out with a high R² of 0.9543, demonstrating that it 

effectively explains 95.43% of the variability in the lightning strike data, 

making it the most reliable model among the three. 

b. Mean Squared Error (MSE) Comparison: 

• RNN: Has a high MSE of 25.5228, A high average squared disparity 

between the expected and actual values is indicated. 

• LSTM: Improves on the RNN, reducing the MSE to 10.2809, showing a 

better fit but still with considerable error. 

• Transformer: Achieves the lowest MSE at 0.3957, highlighting its 

superior accuracy in predicting the lightning strike counts. 

c. Mean Absolute Error (MAE) Comparison: 

• RNN: Records an MAE of 3.3515, reflecting significant prediction 

errors. 

• LSTM: Lowers the MAE to 2.4669, indicating better performance but 

still not optimal. 

• Transformer: Excels with an MAE of 0.4467, demonstrating precise 

predictions and minimal deviation from the actual values. 

d. Root Mean Squared Error (RMSE) Comparison: 

• RNN: The RMSE of 5.0521 shows that the RNN model has substantial 

error magnitudes. 
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• LSTM: Reduces the RMSE to 3.2069, an improvement over the RNN but 

still not very close to ideal. 

• Transformer: Boasts the lowest RMSE of 0.6291, emphasizing its ability 

to make highly accurate forecasts with smaller error magnitudes. 

e. Mean Absolute Percentage Error (MAPE) Comparison: 

• RNN: The MAPE of 93.1760% indicates very poor predictive accuracy, 

with large percentage errors. 

• LSTM: Improves the MAPE to 81.7662%, though still far from optimal. 

• Transformer: Significantly outperforms the others with a MAPE of 

22.4888%, making it the most efficient model in terms of relative 

accuracy. 

f. Overall Evaluation: 

• The RNN model has the weakest performance, with high error values and 

poor explanatory power, making it unsuitable for this forecasting 

application. 

• The LSTM model shows moderate improvement, capturing some 

patterns in the data but still leaving room for significant error reduction. 

• The Transformer model clearly outperforms both RNN and LSTM across 

all metrics, providing highly accurate and reliable forecasts. Its strong R² 

and low error values make it the most effective model for predicting 

lightning strikes in this dataset. 

In conclusion, the comparison highlights the Transformer model as the best 

choice for accurate forecasting, while the RNN and LSTM models lag 

considerably in performance. 

3.7 Making Prediction (Transformer Model) 

The historical data spans from 2018 to 2024, consisting of lightning strike counts 

recorded in bi-weekly intervals. Given this structure, we have a comprehensive 

dataset that provides insights into lightning activity patterns over several years. 

 

To extend our analysis, the Transformer model will be used to forecast lightning 

strikes for the next 8 months, still utilizing the bi-weekly data intervals. This 

means that we will generate a total of 16 future data points (since each month has 

approximately two bi-weekly periods), allowing us to understand and anticipate 

upcoming lightning activity trends more accurately. 

 
Additionally, we showcase the training and validation loss trends, providing 

insight into the learning behavior of the Transformer model in Figure 10. 
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Figure 10 Machine Learning, Transformer model Architecture.  

The graph illustrates the future predictions made using the Transformer model. 

The blue line represents the historical lightning strike counts from 2018 to 2024, 

while the orange line indicates the forecasted values for the next 8 months, with 

data points provided in bi-weekly intervals. The model captures the general trend 

and variability in the lightning activity, projecting potential increases and 

decreases in strike frequency. These predictions are essential for planning and 

implementing safety measures in the 150 kV Bukit Asam - Baturaja transmission 

line area. 

4. Discussion 

The Transformer model's outstanding efficiency and accuracy in time-series 

forecasting and classification tasks have garnered a lot of attention from recent 

studies. The Transformer model has proven to be highly effective across a wide 

range of scientific domains, delivering superior performance compared to 

conventional statistical approaches. Its advanced self-attention mechanism 

empowers it to process large and complex datasets with exceptional efficiency, 

enabling the identification of long-term dependencies and subtle patterns. This 

capability makes the model particularly well-suited for tackling data-intensive 

tasks and uncovering insights that might be missed by more traditional 

methodologies. It is essential to understand that Machine Learning models, like 

the Transformer, require substantial amounts of data to achieve peak accuracy 

and may show diminished performance when operating with smaller datasets. 

For future research, further development and wider application of the 

Transformer model in forecasting lightning strike occurrences that cause 

disturbances to transmission towers are essential. Utilizing this model can 

significantly reduce the time needed for calculations and simulations, providing 
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timely and reliable predictions. Given the unpredictable nature of lightning 

strikes, having a robust and efficient forecasting model like the Transformer is 

crucial for proactive measures and effective transmission tower disturbance 

mitigation strategies. 

5. Conclusion 

The evaluation of the model yielded results that were confirmed through 
metrics like Multiple R-Squared (R²) values, which were utilized to gauge the 

correlation and precision of the predictions. In the realm of Machine Learning 

models, a performance is deemed robust when the R² value surpasses 80%. The 

comparative analysis revealed that the Transformer model, improved through 

data normalization, yielded outstanding predictive outcomes. The training data 

revealed that the Transformer attained a notable R² value of 0.9543, 

demonstrating the model's proficiency in identifying the fundamental patterns 

associated with lightning strike occurrences. The Transformer model 

demonstrated impressive accuracy on the testing data, clearly surpassing the 

RNN and LSTM models regarding error metrics and correlation values. 

In evaluating various modeling approaches, it is crucial to maintain a balance 

between the input and output data to ensure accurate predictions. This study 

revealed that the advanced architecture of the Transformer model performs 

exceptionally well when provided with adequate input data, whereas the RNN 

and LSTM models demonstrated lower effectiveness. Nonetheless, this 

investigation is confined to lightning strike data pertaining to the 150 kV Bukit 

Asam - Baturaja transmission line and may not be broadly applicable to other 

areas or circumstances because of differences in environmental factors and data 

dynamics. 

For future development of these models, incorporating additional relevant 

variables, such as meteorological, geographical, and electrical data, could 

improve the predictive power and adaptability of the model for different 

transmission tower locations and varying conditions. 
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