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Abstract. This study evaluates and compares the performance of three Machine
Learning models—RNN, LSTM, and Transformer—for forecasting lightning
strikes that can disrupt transmission towers along the 150 kV Bukit Asam -
Baturaja line. Using historical lightning data from 2018 to 2024, the models were
trained and validated, with the Transformer model demonstrating superior
predictive accuracy.The Transformer model achieved an impressive R-squared
value of 0.9543, significantly surpassing the performance of both the Recurrent
Neural Network and the Long Short-Term Memory models. The Transformer
model is a dependable option for predictions, as its self-attention mechanism
efficiently identifies dependency patterns and trends. However, the study is limited
to this specific region and dataset, highlighting the need for future research to
incorporate additional variables, such as meteorological and geographical factors,
for improved adaptability. The findings underscore the importance of accurate and
efficient forecasting models to support proactive measures and mitigate lightning-
induced disturbances on transmission infrastructure.chnology for risk mitigation
in electrical transmission networks.
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1 Introduction

Within the Sumatera region of PT PLN UIP3B, lightning disturbances pose a
significant threat to the electrical system. These disturbances not only disrupt the
smooth distribution of power but also cause various hazards and substantial losses.
Lightning disturbances often result in power outages, halting industrial,
commercial, and household activities. This leads to significant economic losses
and disrupts the comfort of the community. Improving the reliability of electrical
transmission is thus a top priority for PT PLN UIP3B Sumatera, aiming to ensure
a stable and reliable electricity supply for all customers.
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PLN customers are entitled to quality and reliable electricity services. Recurring
lightning disturbances can reduce customer satisfaction and damage the
company's reputation. By enhancing the reliability of electrical transmission
through lightning disturbance mitigation, PT PLN UIP3B Sumatera can provide
better service to its customers. Additionally, lightning disturbances not only cause
power outages but also lead to damage to transmission network infrastructure,
such as towers, cables, and transformers. This damage incurs significant repair
costs and downtime, disrupting the operational efficiency of the electrical system.
Furthermore, lightning strikes pose a danger to human life, affecting both PLN
personnel and the general public.

Efforts to mitigate lightning disturbances have traditionally focused on physical
solutions, such as installing lightning arresters and grounding systems. These
methods aim to protect the network infrastructure from direct lightning strikes
and to dissipate the resulting current safely into the ground. While these measures
have proven effective to a certain extent, they are primarily reactive and limited
in their ability to predict and proactively address lightning risks. Previous studies
have emphasized the importance of understanding lightning patterns and
implementing predictive strategies to mitigate potential damage [19]. However,
the adoption of predictive approaches, particularly those leveraging advanced
machine learning techniques, remains limited in this context.

Recent advancements in machine learning offer promising solutions for
predicting lightning strikes and mitigating their impact. Models such as Recurrent
Neural Networks (RNNSs) and Long Short-Term Memory (LSTM) networks have
been widely applied to time-series forecasting tasks. However, their ability to
capture long-term dependencies is constrained by their sequential nature and
vanishing gradient issues [3]. The Transformer model, which leverages a self-
attention mechanism to process entire sequences concurrently, has demonstrated
superior performance in a variety of domains, including natural language
processing and energy demand forecasting. Despite its potential, the application
of the Transformer model in lightning strike prediction remains underexplored.

This study aims to address this gap by evaluating and comparing the performance
of RNN, LSTM, and Transformer models in predicting lightning strikes that
could disrupt electrical transmission towers along the 150 kV Bukit Asam-
Baturaja line. Using historical lightning data from 2018 to 2024, this research
highlights the capabilities of the Transformer model in identifying dependency
patterns and trends more effectively than traditional methods. The findings
contribute to the development of predictive strategies that not only enhance the
reliability of electrical transmission but also support proactive mitigation
measures, ensuring the safety and stability of the network.
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Through this work, we aim to bridge the gap between conventional lightning
mitigation strategies and advanced predictive methodologies, demonstrating how
machine learning can be effectively utilized to forecast lightning disturbances in
a region prone to extreme weather conditions.

2  Methodology

The following steps comprise the approach employed in this study to create a
lightning strike prediction model for electrical transmission networks : data
collection, data processing, machine learning model development, and model
performance evaluation. For more understanding, the research work describes in
Figure 1 below:

Data Collection Data Splittine Model Selection
Collecting lizhming strike data from Data Preprocessing, Data T P 0% Model 1: Transformer.
January 2018 to Fne 2024 from Data Exploration D::: T:ﬁ"\\):'p.;) Model 2: BN
Vaizala e Model 3: LSTM

k.

Model Traini Model Performance Comparison
HICe” | raimig, Mean Absolute Errar (MAE). Making Prediction with Data Visualization and
Model Testing, Mean Squared Error (MSE). Best Model Recommendation
Model Evaluation Mean Absolute Percentage Error (MAPE)
R-squared (R3)

Figure 1 Flowchart of Research Study.

2.1 Study Area

This research focuses on a critical segment of the electrical transmission
infrastructure in Sumatra, which experiences significant challenges due to
lightning disturbances. By concentrating on a specific area, the study intends to
give a detailed evaluation of the historical trends of lightning strikes affecting the
SUTT 150 kV Bukit Asam - Baturaja segment.

2.2 Data

The methodology involves the comprehensive collection of lightning strike data
from VAISALA's FALLS application, which is designed to provide accurate real-
time lightning detection and tracking. FALLS (Fast Acquisition of Lightning
Location System) utilizes advanced sensor technology to monitor and analyze
lightning strikes, offering detailed information on the frequency, location, and
characteristics of lightning events. For this study, historical lightning strike data
was collected over the period from January 2018 to June 2024, allowing for a
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thorough examination of lightning occurrences across the specified transmission
tower locations along the SUTT 150 kV Bukit Asam - Baturaja line.

This focused analysis provides a robust foundation for understanding the impact
of lightning on transmission reliability and serves as a basis for developing
predictive models aimed at mitigating disruptions. By leveraging the precise data
from the FALLS application, the study can effectively correlate lightning activity
with historical disturbances in the transmission network.

While acknowledging the influence of weather conditions and atmospheric
factors, this study intentionally excludes an extensive analysis of these variables
to maintain a clear focus on the lightning data itself. It is anticipated that the
research's conclusions will provide important new information about how to
strengthen the electrical transmission network's resistance to lightning-caused
disruptions in the area, increasing operational resilience and guaranteeing a
steady supply of electricity for consumers.

2.3 Machine Learning

This study explores the effectiveness of three models—Transformer, Recurrent
Neural Network (RNN), and Long Short-Term Memory (LSTM)—in forecasting
the timing of lightning strikes, drawing on methodologies established in previous
time series forecasting research. [1], [2]. The study utilizes evaluation metrics
such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean
Absolute Percentage Error (MAPE), and R-squared (R?2). These criteria, grounded
in established best practices from previous research, ensure a thorough and
reliable comparison of model performance [4], focusing on identifying the most
suitable model architecture for this specific application. This selection of metrics
provides a holistic assessment, considering both the magnitude and percentage of
prediction errors, as well as the overall goodness of fit.

2.3.1 Normalizer

In order to minimize model mistakes, normalization is used, which involves
shrinking the dataset's scale without erasing its values. The dataset is normalized
in this study using the Min-Max approach.

Normalizer = (x—min)/(max — min) (2)

As a data standardization method, Min-Max is well-known and widely used.
Unfortunately, this method discards negative values after processing the dataset
into a specific range (from 0 to 1). Improving the Machine Learning model's
accuracy is the reason behind normalizing the dataset. [5]
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2.3.1 Recurrent neural networks (RNN)

Time series, NLP, and speech recognition are just a few examples of applications
that demand for NNs with recurrent neural networks (RNNs) built in. Connecting
the hidden units of NNs back to themselves with a temporal delay is the basic
principle [6]. By feeding the hidden units themselves, the network effectively
gains a dynamic memory, as they learn to represent the raw input features.
Importantly, the network's weights are shared between timesteps, meaning the
same network is used for every timestep. The idea of weight-sharing is similar to
convolutional neural networks (CNNs), which use the same filter in several input
segments. This not only allows RNNs to train on sequences of varying lengths,
but it also lets them generalize to lengths that weren't present during training.
Figure 2 depicts the overall architecture of an RNN (unrolled).

Figure 2 Machine Learning, RNN model Architecture (adapted from [20])

With an input vector X, the RNN scans the data progressively from left to right,
updating the hidden state and providing an output at each time step. The network
then uses this information to build an output vector y. All time steps use the same
settings. This indicates that the parameters U, V, and W are always used in the
same way by the network. W stands for the weight associated with the link
between hidden layers, U for the connection from input layer X to hidden layer
h, and V for the connection from hidden layer h to output layer y. Because it is
able to store information from earlier inputs in its present hidden state, RNNs can
process sequential data more quickly and capture temporal relationships more
effectively thanks to parameter sharing.

2.3.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks represent an advanced evolution of
Recurrent Neural Networks (RNNSs), specifically designed to effectively capture
long-term dependencies in sequential data. Introduced in 1997 and further refined
in 2013, LSTMs have become highly regarded within the deep learning
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community. Unlike standard RNNs, LSTMs excel at retaining and leveraging
information from longer sequences, making them superior for tasks requiring
extended memory and context. An LSTM network's LSTM unit processes both
the input and output from the previous time step in a given time step. The output
from this unit is then passed on to the time step after that. Classification problems
commonly employ the latest hidden layer from the previous time step, or all
hidden layers together [12]. Figure 3 illustrates the detailed architecture of a Long
Short-Term Memory (LSTM) network. Each LSTM unit consists of three key
components: an input gate, a forget gate, and an output gate, each with a distinct
role in managing the flow of information. The input gate evaluates the current
input and the previous internal state to determine how to update the internal state.
The forget gate plays a crucial role in deciding the extent to which information
from the previous internal state is discarded. Lastly, the output gate regulates how
the internal state ultimately influences the network’s output.
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Figure 3. (a) The architecture of a standard LSTM (adapted from [11]). (b) Inner
structure of LSTM (adapted from [10]).

2.3.3 Transformer

Transformers have exhibited adaptability, producing competitive results in
domains beyond natural language processing, including time series modeling [13].
Unlike RNNs, which handle sequences step by step, transformers process entire
sequences simultaneously using a combination of attention mechanisms and feed-
forward layers. Attention blocks generate an output sequence by calculating
weighted sums of transformed input elements, allowing information to flow
across the sequence dimension. Elements with higher importance are assigned
greater weights, emphasizing their significance. Meanwhile, the feed-forward
block adds non-linearity to the transformer layer by applying a uniform operation
to each element in the sequence.

Feed-forward blocks function as position-specific operations, independently
applied to each position within the sequence. In contrast, attention blocks
facilitate interactions across positions, enabling the exchange of information
between them. [14]
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The original transformer employs dot product attention to calculate pairwise
weights between all elements within a given sequence. However, this approach
requires quadratic memory to store intermediate weights, which limits its
scalability for longer input sequences. Since its inception, numerous adaptations
have been developed to enhance the transformer's effectiveness, particularly for
time series applications. These improvements are categorized based on the
specific components or methods they modify, including positional encoding,
attention mechanisms, convolution, gating, and dense interpolation[15].

Positional encoding is essential in transformers for embedding positional
information into the model, ensuring it can differentiate between sequence
positions. Without this mechanism, position-wise operations would be ineffective.
The original transformer employed cosine-based positional encoding, which
represents the absolute positions of data points by calculating cosines at varying
frequencies for their angular positions. However, relative positional encodings
have been proposed, emphasizing the importance of the distance between
elements to improve performance [16]. For time series modeling, timestamp-
based positional encoding is particularly relevant, as it conveys critical date and
time details. This approach is especially useful for datasets like energy
consumption or consumer pricing, where seasonal patterns tied to calendar dates
and local time are significant [17].

The transformer introduced by Vaswani et al. [18] in 2017 aimed to address the
challenges of neural machine translation. Figure 3 illustrates the transformer
architecture.

3 Result

3.1 Preprocessing Data

The graph above shows lightning strike data collected from the tower segment of
the 150 kV Bukit Asam - Baturaja transmission line, spanning the period from
2018 to 2024. Data preprocessing included converting the date column to a
datetime format, which includes the year, month, day, and hour, to allow for more
effective time-based analysis and feature extraction.. This preprocessing aims to
ready the data for a forecasting model designed to predict future lightning strikes,
ensuring that patterns and trends in the time series data are accurately captured
and effectively utilized.
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Figure 4. Transformer model Architecture. (adapted from [18])
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The image above presents an exploration of lightning strike data collected from
the tower segment of the 150 kV Bukit Asam - Baturaja transmission line. The
data spans from 2018 to mid-2024 and is decomposed into its components: trend,
seasonality, and residuals. The decomposition reveals a clear trend in the
lightning strike counts over time, while the seasonal and residual components
appear minimal or flat, indicating a lack of strong seasonality in the data. This
analysis helps in understanding the underlying patterns and is crucial for
developing an effective forecasting model for future lightning strikes.

3.3 Data Splitting for Training the Model

To ensure the robustness and reliability of the machine learning models, an
essential step in the modeling process is splitting the dataset into subsets for
training and testing purposes. This step is crucial to evaluate the model's ability
to generalize to unseen data and avoid overfitting. By creating separate datasets
for training and validation/testing, the model's performance can be accurately
assessed under conditions that mimic real-world scenarios. The following section
describes the approach used to partition the dataset and the rationale behind the
chosen splitting strategy.

The dataset was divided into training and validation/testing sets to evaluate the
performance of the models. A standard 80-20 split was used, where 80% of the
data was allocated for training and 20% for validation and testing. The training
data was used to optimize the model parameters, while the validation/testing data
was reserved to assess the model's ability to generalize to unseen data. This
approach ensures a robust evaluation of the models while minimizing the risk of
overfitting.

3.4 Hyperparameter Configuration

To effectively compare the performance of RNN, LSTM, and Transformer
models, distinct hyperparameter configurations were tailored for each model
based on their architecture and computational requirements. The configurations
aim to balance model complexity, training efficiency, and predictive accuracy.
The following table provides a visual comparison of the hyperparameter settings,
including the number of layers, units per layer or model dimension, batch size,
and learning rate, to highlight the differences and rationale behind the choices.

a. Number of Layers per Model:
The Transformer model has the highest number of layers (4), while both RNN
and LSTM models use 2 layers. This additional depth in the Transformer
allows it to capture more complex patterns and long-term dependencies within
the data.
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Table 1 Hyperparameter configuration. (created by the authors)

Hyperparameter RNN LSTM Transformer
Number of Layers 2 2 4
Units per Layer 50 100 -
Attention Heads - - 8
Model Dimension - - 256
Feed-forward Dim - - 512
Activation Function RelLU Tanh RelL.U
Learning Rate 0.001 (Adam) 0.001 (Adam) 0.0001 (Adam)
Batch Size 32 32 16
Epochs 100 100 50
Dropout Rate - 0.2 0.1

b. Units per Layer / Model Dimension:
RNN and LSTM have 50 and 100 units per layer, respectively. In contrast, the
Transformer employs a model dimension of 256, which represents its ability
to process and encode richer features through each layer, making it more
powerful for complex datasets.

c. Batch Size per Model:
The batch size used for the Transformer is smaller (16) compared to RNN
and LSTM (32). This choice is due to the higher computational cost of the
Transformer, which requires smaller batches to maintain efficient training.

d. Learning Rate per Model:
The Transformer uses a smaller learning rate (0.0001) compared to RNN and
LSTM (0.001). This is necessary to stabilize the training process for the more
complex Transformer architecture and avoid overshooting during
optimization.

3.5 Evaluating Model

The graph presented illustrates the efficacy of the RNN model in forecasting
lightning strikes. The blue line illustrates the predictions generated by the model,
whereas the orange line denotes the actual observed values. Significant
differences between expected and actual values suggest that the RNN model has
trouble seeing patterns in the data, which causes it to make inaccurate predictions.
This underscores the model's constraints in effectively predicting lightning strikes
for this dataset.
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Figure 8. Evaluating Model of LSTM Model.

The graph demonstrates the efficacy of the LSTM model in forecasting lightning
strikes. The blue line illustrates the predictions made by the model, while the
orange line depicts the actual values observed. Although the LSTM model
demonstrates a marginally superior performance compared to the RNN, it
continues to struggle with accurately tracking the actual data patterns, particularly
during peak periods. The model effectively identifies certain trends, but it fails to
reliably forecast abrupt variations in lightning strikes, as seen by the disparities
between the projected and real numbers.
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Figure 9. Evaluating Model of Transformer Model.

The graph demonstrates the efficacy of the Transformer model in predicting
lightning strikes. The blue line represents the actual values, while the orange line
indicates the projected values. The Transformer model demonstrates remarkable
accuracy, precisely matching the actual data patterns and effectively capturing
both peaks and variations. The little discrepancies noted between the predicted
and real values highlight the model's strong capacity to predict lightning strikes,
establishing it as the most reliable choice compared to alternatives like RNN and

LSTM.

3.6 Model Evaluation Comparison
Table 2 Summary of parameters.

R-squared Mean Squared Mean Root Mean  Mean Absolute

Model (R2) Error Absolute Error Squared Error Percentage Error
(MSE) (MAE) (RMSE) (MAPE)
RNN -0.0766 255.228 33.515 50.521 93.176
LSTM 0.0112 102.809 24.669 32.069 817.662
Transformer 0.9543 0.3957 0.4467 0.6291 224.888

While the Transformer model demonstrates superior performance with
significantly lower MSE, MAE, and RMSE compared to RNN and LSTM, its
MAPE is observed to be higher than that of RNN. This discrepancy can be
attributed to the sensitivity of MAPE to data points with small actual values.
MAPE calculates the percentage error by dividing the absolute error by the actual
value, which causes even small absolute errors to result in disproportionately high

percentage errors when the actual values are close to zero.
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In this study, the dataset includes a considerable number of zero or near-zero
values, particularly during dry seasons when lightning activity is minimal. As a
result, these periods with low or no lightning frequency amplify the MAPE, even
though the Transformer exhibits superior predictive accuracy overall. In contrast,
metrics such as MSE, MAE, and RMSE measure errors on an absolute scale,
making them less affected by the magnitude of the actual values. Consequently,
the higher MAPE value for the Transformer does not necessarily reflect its overall
performance but rather highlights its sensitivity to these specific conditions in the
dataset.

The table provides a detailed comparison of three forecasting models—RNN,
LSTM, and Transformer—using several performance metrics to assess their
effectiveness.

a. R-squared (R? Comparison:

e RNN: With an R2 value of -0.0766, the RNN model struggles
significantly to capture the variance in the data, suggesting that it does
not perform well in this forecasting task.

e LSTM: Shows slight improvement with an R2 value of 0.0112, but it still
explains very little of the data's variability, indicating that the model has
room for enhancement.

o Transformer: Stands out with a high R2 of 0.9543, demonstrating that it
effectively explains 95.43% of the variability in the lightning strike data,
making it the most reliable model among the three.

b.  Mean Squared Error (MSE) Comparison:

o RNN: Has a high MSE of 25.5228, A high average squared disparity
between the expected and actual values is indicated.

e LSTM: Improves on the RNN, reducing the MSE to 10.2809, showing a
better fit but still with considerable error.

o Transformer: Achieves the lowest MSE at 0.3957, highlighting its
superior accuracy in predicting the lightning strike counts.

c.  Mean Absolute Error (MAE) Comparison:

e RNN: Records an MAE of 3.3515, reflecting significant prediction
errors.

e LSTM: Lowers the MAE to 2.4669, indicating better performance but
still not optimal.

o Transformer: Excels with an MAE of 0.4467, demonstrating precise
predictions and minimal deviation from the actual values.

d. Root Mean Squared Error (RMSE) Comparison:

e RNN: The RMSE of 5.0521 shows that the RNN model has substantial

error magnitudes.
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e LSTM: Reduces the RMSE to 3.2069, an improvement over the RNN but
still not very close to ideal.

o Transformer: Boasts the lowest RMSE of 0.6291, emphasizing its ability
to make highly accurate forecasts with smaller error magnitudes.

e.  Mean Absolute Percentage Error (MAPE) Comparison:

e RNN: The MAPE of 93.1760% indicates very poor predictive accuracy,
with large percentage errors.

e LSTM: Improves the MAPE to 81.7662%, though still far from optimal.

o Transformer: Significantly outperforms the others with a MAPE of
22.4888%, making it the most efficient model in terms of relative
accuracy.

f.  Overall Evaluation:

o The RNN model has the weakest performance, with high error values and
poor explanatory power, making it unsuitable for this forecasting
application.

e The LSTM model shows moderate improvement, capturing some
patterns in the data but still leaving room for significant error reduction.

o The Transformer model clearly outperforms both RNN and LSTM across
all metrics, providing highly accurate and reliable forecasts. Its strong R2
and low error values make it the most effective model for predicting
lightning strikes in this dataset.

In conclusion, the comparison highlights the Transformer model as the best
choice for accurate forecasting, while the RNN and LSTM models lag
considerably in performance.

3.7 Making Prediction (Transformer Model)

The historical data spans from 2018 to 2024, consisting of lightning strike counts
recorded in bi-weekly intervals. Given this structure, we have a comprehensive
dataset that provides insights into lightning activity patterns over several years.

To extend our analysis, the Transformer model will be used to forecast lightning
strikes for the next 8 months, still utilizing the bi-weekly data intervals. This
means that we will generate a total of 16 future data points (since each month has
approximately two bi-weekly periods), allowing us to understand and anticipate
upcoming lightning activity trends more accurately.

Additionally, we showcase the training and validation loss trends, providing
insight into the learning behavior of the Transformer model in Figure 10.
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Figure 10 Machine Learning, Transformer model Architecture.

The graph illustrates the future predictions made using the Transformer model.
The blue line represents the historical lightning strike counts from 2018 to 2024,
while the orange line indicates the forecasted values for the next 8 months, with
data points provided in bi-weekly intervals. The model captures the general trend
and variability in the lightning activity, projecting potential increases and
decreases in strike frequency. These predictions are essential for planning and
implementing safety measures in the 150 kV Bukit Asam - Baturaja transmission
line area.

4. Discussion

The Transformer model's outstanding efficiency and accuracy in time-series
forecasting and classification tasks have garnered a lot of attention from recent
studies. The Transformer model has proven to be highly effective across a wide
range of scientific domains, delivering superior performance compared to
conventional statistical approaches. Its advanced self-attention mechanism
empowers it to process large and complex datasets with exceptional efficiency,
enabling the identification of long-term dependencies and subtle patterns. This
capability makes the model particularly well-suited for tackling data-intensive
tasks and uncovering insights that might be missed by more traditional
methodologies. It is essential to understand that Machine Learning models, like
the Transformer, require substantial amounts of data to achieve peak accuracy
and may show diminished performance when operating with smaller datasets.

For future research, further development and wider application of the
Transformer model in forecasting lightning strike occurrences that cause
disturbances to transmission towers are essential. Utilizing this model can
significantly reduce the time needed for calculations and simulations, providing
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timely and reliable predictions. Given the unpredictable nature of lightning
strikes, having a robust and efficient forecasting model like the Transformer is
crucial for proactive measures and effective transmission tower disturbance
mitigation strategies.

5. Conclusion

The evaluation of the model yielded results that were confirmed through
metrics like Multiple R-Squared (R?) values, which were utilized to gauge the
correlation and precision of the predictions. In the realm of Machine Learning
models, a performance is deemed robust when the R? value surpasses 80%. The
comparative analysis revealed that the Transformer model, improved through
data normalization, yielded outstanding predictive outcomes. The training data
revealed that the Transformer attained a notable R2? value of 0.9543,
demonstrating the model's proficiency in identifying the fundamental patterns
associated with lightning strike occurrences. The Transformer model
demonstrated impressive accuracy on the testing data, clearly surpassing the
RNN and LSTM models regarding error metrics and correlation values.

In evaluating various modeling approaches, it is crucial to maintain a balance
between the input and output data to ensure accurate predictions. This study
revealed that the advanced architecture of the Transformer model performs
exceptionally well when provided with adequate input data, whereas the RNN
and LSTM models demonstrated lower effectiveness. Nonetheless, this
investigation is confined to lightning strike data pertaining to the 150 kV Bukit
Asam - Baturaja transmission line and may not be broadly applicable to other
areas or circumstances because of differences in environmental factors and data
dynamics.

For future development of these models, incorporating additional relevant
variables, such as meteorological, geographical, and electrical data, could
improve the predictive power and adaptability of the model for different
transmission tower locations and varying conditions.

Acknowledgements

Under contract number..., this study was made possible by a research grant from
the Bandung Institute of Technology (ITB)'s DTTP program. Along with the
RUI (Research Excellence Grant) from the ITB (contract number...).

References



[1]
(2]

3]

[4]

[5]

(6]

[7]
(8]
9]

[10]

[11]

[12]

[13]

[14]

Prediction of Lightning Strikes Electrical 17

Hochreiter, S. & Schmidhuber, J., “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., Kaiser, L., & Polosukhin, I., “Attention Is All You Need,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

S. Lilik, "Optimalkan Pemanfaatan Big Data dan Machine Learning untuk
Prediksi Pemadaman Listrik," Fakultas Teknologi Maju dan Multidisiplin,
Universitas Airlangga, 2021.

Hyndman, R. J. & Athanasopoulos, G., Forecasting: Principles and
Practice, 3rd ed., OTexts, 2018.

Jin X, Zhang J, Kong J, Su T, Bai Y. A Reversible Automatic Selection
Normalization (RASN) Deep Network for Predicting in the Smart
Agriculture System. Agronomy 2022;12.
https://doi.org/10.3390/agronomy12030591.

Michael I. Jordan. Serial order: A parallel, distributed processing approach.
Technical report, Institute for Cognitive Science, University of California,
San Diego, 1986.

S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural.
Comput., vol. 9, no. 8, pp. 1735- 1780, 1997. MIT-Press.

A. Graves, "Generating sequences with recurrent neural networks," arXiv
preprint arXiv:1308.0850, 2013.

S. Minaee, E. Azimi, and A. Abdolrashidi, "Deep-sentiment: Sentiment
analysis using ensemble of cnn and bi-Istm models," arXiv preprint
arXiv:1904.04206, 2019.

W. Fang, Y. Chen, and Q. Xue, "Survey on research of RNN-based spatio-
temporal sequence prediction algorithms," J. Big. Data., vol. 3, no. 3, pp.
97, 2021, doi: 10.32604/jbd.2021.016993.

Y. Wang, M. Huang, L. Zhao, and X. Zhu, "Attention-based LSTM for
Aspect-level Sentiment Classification," presented at the Conference on
Artificial Intelligence, Jan. 2016. doi: 10.18653/v1/D16-1058. [Online].
Available: https://www.researchgate.net/publication/311990858

M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in deep
learning. Springer, 2020.

P. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A
Transformer-based  Framework for Multivariate Time  Series
Representation Learning,” Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pp. 2114-2124,
2021.

H. S. Tsai, S. Bai, and J. J. Malik, “Transformer-based Feature
Aggregation for Video Classification,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 30, no. 5, pp. 1402-1410, 2019.


https://doi.org/10.3390/agronomy12030591.

18

[15]

[16]

[17]

(18]

[19]

[20]

Aditya Adiaksa, et al.

N. Ahmed, I. Mohammed, and K. Lee, “Improving Transformers for Time
Series Forecasting,” International Journal of Neural Networks, vol. 35, no.
7, pp. 185-198, 2022.

J. Su, S. Lin, and G. Sun, “Modeling Time Series Data Using Transformer
Architectures,” IEEE Transactions on Artificial Intelligence, vol. 12, no. 3,
pp. 142-153, 2021.

A. Shankaranarayana and B. Runje, “Time Series Data Representation
Using Timestamp Positional Encodings,” IEEE Transactions on
Knowledge and Data Engineering, vol. 33, no. 6, pp. 2211-2220, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is All You Need,” Advances in
Neural Information Processing Systems, vol. 30, pp. 5998-6008, 2017.

D. Jakah, D. Muslim, A. T. Mursito, Z. Zakaria, and E. T. Sumarnadi,
"Perlindungan petir, sistem pentanahan dan resistivitas tanah: Studi kasus,"
Jurnal Teknologi dan Rekayasa, vol. 15, no. 2, pp. 263-270, 2021.

[1] S. Poudel, "Recurrent Neural Network (RNN) Architecture Explained,"
Medium, May 4, 2020. [Online]. Available:
https://medium.com/@poudelsushmita878/recurrent-neural-network-rnn-
architecture-explained-1d6956054 1ef. [Accessed: Nov. 28, 2024].



