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Abstract. Particle-in-Cell (PIC) is the most common method used in a fully-

kinetic solver, usually for low-density gases and non-equilibrium plasma 

simulation. The finite volume method is the natural choice for solving the Eulerian 

field because of its familiarity and ability to simulate arbitrary geometries. This 

work introduces the least squares moving particle semi-implicit (LSMPS) method 

as an alternative by using the particle method for solving spatial differentiation in 

Particle-in-Cell solver. In order to conduct a full simulation, some essential 

supporting functions should also be made, such as the field weighting for the 

Lagrangian particle description and the particle pusher algorithm to accommodate 

the external forces, such as Lorentz force in plasma. Plasma oscillation 

benchmarking will be used to validate all of the functions.  
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1 Introduction 

Particle-in-Cell (PIC), as mentioned by Birdsall and Langdon in [1], is a method 

that combines the Lagrangian description of fluid particles with the Eulerian 

description of field variables on a mesh. This approach is suitable for fully-kinetic 

simulation, where many particles are required to be simulated. The computational 

cost could be lower by implementing the field solver on the mesh, and later the 

values are weighted to the particle and vice versa. Fully-kinetic simulation is used 

for low-density fluid numerical simulation because the continuum approach is 

not applicable due to the non-equilibrium nature of its microstate. In other words, 

the mean-free-path length is comparable or larger than the domain size, which 

implies that the Maxwellian distribution has not been achieved for the velocity 

distribution function (VDF). The VDF could be resolved by using many particles 

as the sample in the simulation.  

Plasma is one of the applications that can be simulated numerically using the PIC 

solver due to its low particle density. Plasma is the combination of charged 

particles in the form of electrons, ions, and non-charged particles, neutrals. Some 

attempts to simulate plasma have been conducted using PIC solver, for example, 

by Szabo and Sanchez in [2] for fully kinetic simulation, and by Olshevsky et al. 

in [3] for fluid-PIC simulation. Also, some recent works to optimize PIC solver 
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have been conducted, for example, by Juhasz et al. in [4]. Another recent method 

of simulating plasma uses the direct kinetic method by solving the Boltzmann 

equation by Hara et al. in [5] and Raisanen et al. in [6]. This method has less 

numerical noise but also has a higher computational cost. 

 

Figure 1 PIC Illustration. 

The fluid particles used in PIC numerical simulation are superparticles, which 

means each particle represents a number of real atomic particles due to 

computation capability. As shown in Error! Reference source not found., these 

particles are called the Lagrangian fluid particles, and they move through the 

spatial domain during simulation. For each time step, the particles' properties are 

weighted to the Eulerian grid nodes. Later, the updated values from solving the 

field equation are weighted back to the particles and used to move the Lagrangian 

fluid particles. This PIC algorithm is visualized in Error! Reference source not 

found.. 

 

Figure 2 PIC Flowchart. 

The LSMPS method, which was developed by Koshizuka and Tamai in [7], is a 

method to solve PDE equations with the Lagrangian approach. The popularity of 

LSMPS has underlined some implementations on fluid dynamics simulation like 

in [8] by Gao et al. This work proposed LSMPS to solve the field equation in 

Eulerian description replacing the FVM. However, the grid nodes used in this 
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work are still the same, although LSMPS can solve the field equation with 

randomized nodes position. The purpose here is to make sure that the LSMPS 

method can work well in PIC solver.  

2 Theoretical Background 

Many supporting functions are required to build a complete PIC solver. Based on 

the basic flowchart in Error! Reference source not found., there are three main 

functions: weighting, solving field equations (Poisson's equation), and moving 

particles (Lorentz force). Without considering collisions terms, only special cases 

of plasma conditions can be simulated. In this section, a description of each 

function is given. 

2.1 Weighting 

There are two types of weighting: scattering, from particles to grid, and gathering, 

from the grid to particles. The weighting used is linear weighting based on the 

location of the particle inside the cell. The proportion in the horizontal direction 

is 𝛼1, and in the vertical direction is 𝛼2. The color area shows the scattering 

weighting proportions to the four nodes in Error! Reference source not found.. 

It is also the same principle for gathering. This method of weighting was proposed 

by Birdsall and Langdon in [1]. 

 

Figure 3 Weighting for Scattering. 

If the Eulerian grid is not in rectilinear configuration, then bi-linear mapping 

should be implemented first to calculate the value of 𝛼1 and 𝛼2 or following the 

weighting method proposed by Seldner and Westermann in [9]. 

2.2 LSMPS 

The least squares moving particle semi-implicit (LSMPS) method was first 

published by Koshizuka and Tamai in [7] to simulate incompressible flow with 

free surfaces. The spatial derivatives used are obtained by minimizing the error 
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using the weighted least squares function. This LSMPS procedure will be used in 

this work to solve the field equation in the PIC solver. 

The expression of derivatives (𝐷𝑥𝑓) in each particle location (𝑥𝑖) is determined 

by the value (𝑓) of its neighbor particles (𝑥𝑗) under distance less than the sphere 

of influence (𝑟𝑒) as shown in Error! Reference source not found., the set of the 

neighbor members is Λ𝑖. The formulation LSMPS is based on Taylor series 

expansion, so the polynomial basis (𝑝) for the derivatives are in order, like in two 

dimensions becomes [1, 𝑥, 𝑦, 𝑥𝑦, 𝑥2, 𝑦2]. In the formulation, the variables are also 

divided by a scaling parameter (𝑟𝑠), which is chosen between 0 and 𝑟𝑒. 

 

 

Figure 4 LSMPS Neighboring Particles. 

The weight function (𝜔) can be chosen arbitrarily, as long as the weight function 

value is finite, its value outside the sphere of influence is zero, and its value 

decreases when it is farther from the origin point. In the simulation, this weight 

function is used.  

𝜔(𝑥, 𝑟𝑒) = {
(1 −

|𝑥|

𝑟𝑒
)

4
 , 0 ≤ |𝑥| < 𝑟𝑒

0           , |𝑥| > 𝑟𝑒

                                                                        (1) 

 

The formulation for the derivatives Eq. (2) is shown in the following equations, 

where 𝛼 is the order of the polynomial basis. 

𝐷𝑥𝑓(𝑥𝑖) = 𝐻𝑟𝑠
𝑀𝑖

−1𝑏𝑖                                                                                                     (2) 

𝐻𝑟𝑠
≡ 𝑑𝑖𝑎𝑔 {{𝑟𝑠

−|𝛼|
𝛼!}

1≤|𝛼|≤𝑝
}                                                                                   (3) 

𝑀𝑖 ≡ ∑ (𝜔(𝑥𝑗 − 𝑥𝑖 , 𝑟𝑒)𝑝 (
𝑥𝑗−𝑥𝑖

𝑟𝑠
) 𝑝𝑇 (

𝑥𝑗−𝑥𝑖

𝑟𝑠
))𝑗∈Λ𝑖

                                               (4) 

𝑏𝑖 ≡ ∑ (𝜔(𝑥𝑗 − 𝑥𝑖 , 𝑟𝑒)𝑝 (
𝑥𝑗−𝑥𝑖

𝑟𝑠
) {𝑓(𝑥𝑗) − 𝑓(𝑥𝑖)})𝑗∈Λ𝑖

                                          (5) 
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2.3 Poisson's Equation 

The equation that needs to be solved in the Eulerian grid nodes for plasma 

simulation is Poisson's Equation. The charge density value (𝜌) is obtained from 

the particles' charge scattering to the nodes, and its value is updated every time 

step. The Poisson's equation for electrostatic (∇ × 𝐸 = 0), no induced magnetic 

field, is given by Eq. (6) where 𝜙 is electric potential, and 𝜀0 is the electric 

permittivity in a vacuum. These formulations are taken from [10] by Griffiths. 

∇2𝜙 = −
𝜌

𝜀0
                                                                                                                      (6) 

This equation is solved using LSMPS spatial derivation by applying appropriate 

boundary conditions in the domain. The electric field (𝐸) is the value needed for 

moving the Lagrangian particles by Lorentz force. Therefore, the value of the 

electric field is obtained from the negative gradient of electric potential, also 

using LSMPS spatial derivation operator. 

E = −∇𝜙                                                                                                                          (7) 

2.4 Lorentz Force 

The acceleration of the Lagrangian particles is obtained from Lorentz force (𝐹𝐿) 

due to electric charge (𝑞) behavior under electric (𝐸) and magnetic (𝐵) fields. 

FL = 𝑞(𝐸 + 𝑣 × 𝐵)                                                                                                       (8) 

The relation of force and acceleration can be easily obtained from Newton's 

Second Law, but a relativistic approach is used here F =
𝑑(𝛾𝑚𝑣)

𝑑𝑡
, where 𝛾 =

1

√1−(𝑣/𝑐)2 
 is the Lorentz factor. 

𝑚
𝑑(𝛾𝑣)

𝑑𝑡
= 𝑞(𝐸 + 𝑣 × 𝐵)                                                                                              (9) 

The updated velocities are numerically obtained using the method by Boris in 

[11], but the method by Vay in [12] is used for the relativistic pusher algorithm 

due to the 𝛾 factor. The updated positions are obtained using the standard Leap-

frog algorithm. 

2.5 Plasma Oscillation 

Plasma oscillation is the rapid oscillation of electron density due to charge 

imbalance, although the total charge in the domain is zero. This phenomenon will 

be simulated to validate the full PIC solver using the LSMPS method. The 
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oscillation can be observed from the change of total electric potential energy (𝐸𝑝) 

in the Eulerian grid nodes and total electrons' kinetic energy (𝐸𝑘). 

𝐸𝑝 = ∑ (
1

2
𝜀0𝐸2Δ𝑉)𝑛𝑜𝑑𝑒𝑠                                                                                            (10) 

𝐸𝑘 = ∑ ((𝛾 − 1)𝑚𝑒𝑐2)𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠                                                                                 (11) 

The nodes' volume (Δ𝑉) is the area around the nodes for a two-dimension domain, 

usually is chosen as the area of the quadrilateral of cell center points of the 

surrounding cells. The plasma angular frequency (𝜔𝑝) is given in Eq. (12), where 

𝑛𝑒 is electron number density and 𝑒 is the electron's elementary charge. The 

formulation is taken from [13] by Chen. 

𝜔𝑝 = √
𝑛𝑒𝑒2

𝑚𝑒𝜀0
                                                                                                                  (12) 

 

The observed energy oscillation frequency should be twice the plasma frequency 

because electrons are at rest twice before returning to their original positions as a 

complete cycle. 

3 Validation Results 

In this work, three validations are conducted: the LSMPS method of solving 

Poisson's equation, the particle pusher algorithm, and the plasma oscillation 

validation. The validation domains of particle pusher and plasma oscillation are 

taken from the work of Kuhn and Groll in [14]. 

3.1 LSMPS solver and FVM Solver 

In order to check the credibility of the LSMPS method of solving Poisson's 

equation, an analytical problem in Eq. (13) with an analytical solution in Eq. (14) 

is used as the benchmarking problem. Also, an FVM solver is made as a 

comparison to the result of the LSMPS method. The domain is square in 𝑥𝑦 plane 

[-1,1] and has the Dirichlet boundaries for all sides, which are equal to 0. 

𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 = −2𝜋2sin (𝜋𝑥)sin (𝜋𝑦)                                                                        (13) 

𝑓(𝑥, 𝑦) = sin (𝜋𝑥)sin (𝜋𝑦)                                                                                       (14) 

 

In this simulation, 𝑟𝑠 is set as the distance between nodes, and 𝑟𝑒 is set as two 

times and a half of 𝑟𝑒. The results are compared to the analytical result in terms 
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of Root Mean Square Error, RMSE = √∑ (𝑓𝑝−𝑓𝑎)
2𝑁

𝑖=1

𝑁
, where 𝑓𝑝 is the predicted 

value, 𝑓𝑎 is the analytical value, and 𝑁 is the number of nodes. 

 

Table 1 RMSE of LSMPS and FVM. 

Domain LSMPS FVM 

25 x 25 7.485e-03 2.539e-03 

50 x 50 1.912e-03 6.456e-04 

100 x 100 4.840e-04 1.629e-04 

Both LSMPS and FVM can accurately solve Poisson's equation, as seen from 

the small RMSE values. Although LSMPS accuracy is lower than FVM, this 

method is still good as an alternative to FVM. 

 

Figure 5  LSMPS and FVM Results (50 x 50). 

3.2 Particle Pusher  

The algorithm of moving the Lagrangian fluid particles contains two parts: 

parallel acceleration due to the electric field and perpendicular acceleration due 

to the magnetic field. Each of the acceleration will be validated separately. 

3.2.1 Electric Acceleration 

The setup is a one-dimensional domain, where there is an electric potential 

difference (𝑈) between the ends. An electron with mass 𝑚𝑒 and charge 𝑒 is placed 

at zero velocity at one end, then the electron is accelerated by the electric field, 

and the final velocity (𝑣𝑓) at the end is captured. From the conservation of energy, 

the analytical result of the final velocity is given by Eq. (13). 
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𝑣𝑓 =    𝑐√1 −
1

(1+
𝑒𝑈

𝑚𝑒𝑐2)
2                                                                                              (15) 

 

Both the Boris method and Vay's method are validated here compared to the 

analytical result, with a variation of electric potential differences from 1 𝑉 to 

106 𝑉. As shown in Error! Reference source not found., the results in the non-

relativistic regime are accurate for both solvers. Also, as expected, when the 

electric potential difference is high and the final velocity is approaching the speed 

of light (𝑐), the relativistic particle pusher using Vay's method can still get an 

accurate result. 

 

 

Figure 6 Electric Acceleration Validation. 

3.2.2 Magnetic Circular Motion 

Constant magnetic field (B = 1 T) is applied in the z-direction, and an electron is 

placed on 𝑥𝑦 plane with initial velocity (𝑣0 = 0.1𝑐) in the 𝑥-direction at a 

position gyro radius (𝑟𝑔) below the origin. The electron should be moving in a 

circular motion around the origin and has angular frequency same as gyro angular 

frequency (𝜔𝑔). 

𝑟𝑔 =
𝑒𝑣0

𝛾𝑚𝑒
                                                                                                                          (16) 

𝜔𝑔 =
𝑒𝐵

𝛾𝑚𝑒
                                                                                                                        (17) 

 
The electron's trajectory is a circular motion with 𝑟𝑔 = 17.12 𝑚𝑚 as shown in 

Error! Reference source not found.. The theoretical frequency of the circular 
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motion is 27.88 𝐺𝐻𝑧, and in the simulation is 27.85 𝐺𝐻𝑧. Overall, the particle 

pusher algorithm is doing well. 

 

Figure 7 Magnetic Circular Motion Validation. 

3.3 Plasma Oscillation  

This benchmark validates the combination of the particle weighting algorithm in 

the PIC method, the particle pusher algorithm using Vay's method, and Poisson's 

equation solver using the LSMPS method. The domain size is 6 𝑚 × 0.8 𝑚, 

discretized into 120 × 16 cells, and all boundaries are grounded into 0 V. For this 

test, one million zero-velocity electrons are scattered inside the domain with 

appropriate particle weight, so the electron number density is 𝑛𝑒 = 1013 𝑚3, and 

the same number of ions are placed but at slightly different positions by Δ𝑥 =
0.01 sin (2𝜋𝑥/3) from the electrons' positions. In addition, ions are fixed at their 

positions and not allowed to move. 

 

Figure 8 Plasma Oscillation Validation. 
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The electrons will move by the electric field induced by the displacement at the 

beginning. After that, the energy will be converted into the electron's kinetic 

energy. The electrons will stop again, and the energy is transferred back to electric 

potential energy. As a result, oscillation behavior in the total energy is observed, 

as shown in Error! Reference source not found.. The first complete oscillation is 

achieved after 35.58 𝑛𝑠 since the simulation started, and the second is after 

71.38 𝑛𝑠. In short, the average period of the oscillation in the simulation is 

35.69 𝑛𝑠, and the theoretical value of the period based on Eq. (12) is 35.20 𝑛𝑠.  

Overall, the plasma oscillation can be captured well, and the frequency value is 

just slightly different from the theoretical value. Moreover, the energy is 

conserved during the simulation oscillating back and forth between kinetic and 

electric potential energy. However, the electrons in the simulation could not be 

back to their initial rest conditions, and they still have some kinetic energy 

remaining.  

4 Conclusions 

In conclusion, the LSMPS method is doing well and compatible with the PIC 

solver. Although the LSMPS method's accuracy is lower than the FVM in the 

same Eulerian grid configuration for solving Poisson's equation, this method has 

the potency to be a great method in the future. One example is a fully particle-

based simulation where the Eulerian grid nodes do not need to be in a structural 

configuration. 

 

The particle pusher algorithm can resolve the motion of the particles accurately 

under Lorentz force. The parallel accelerated motion due to the electric field is 

very close to the theoretical prediction. It is also the case for perpendicular 

accelerated motion due to the magnetic field. Relativistic particle pusher using 

Vay's method is proven to be accurate and can be used for PIC simulation in the 

future. 

 

This work has validated the plasma oscillation, and the plasma frequency 

obtained is close to the theoretical value. However, some numerical errors appear 

in the result. It leads to the inability of the electrons to be back to their original 

positions, as can be seen from the total kinetic energy that keeps increasing even 

though the total energy in the simulation is conserved. These numerical errors 

come from the accumulated weighting error and the LSMPS numerical error. 

 

Different weighting schemes for scattering and gathering between the Eulerian 

grid nodes and the Lagrangian fluid particles can be analyzed in future work. The 

LSMPS method has parameters that can be changed, such as the weighting 
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function and the radius of influence (𝑟𝑒). These parameters can be optimized to 

every simulated domain to achieve minimum numerical error. 

 

For further works and applications, the function to handle collisions should be 

added to the solver, as mentioned by Bird in [15]. By having collisions models as 

the addition, an actual domain such as electric propulsion devices, which was 

listed by Goebel and Katz in [16], can be numerically simulated using the 

developed solver. 
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