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Abstract. A tsunami early warning system using buoys is vital for early warning
of tsunami waves. Its vulnerability to tampering and even vandalism emphasizes
the need for an object detection vision system for tsunami buoys. Moreover,
researchers typically position these buoys at considerable distances from the
seashore. The current tsunami early warning system lacks an object detection
system capable of providing warnings about the presence of other disturbing
objects. Hence, any system vision must incorporate object detection with energy
efficiency. This research studies various efficient object detection network models
that support object detection systems for these tsunami buoys. WaSR-T model
network with temporal context was developed and equipped with a lightweight
encoder MobileNetV3 to run on a single board computer. Although the test results
show less than optimal performance than the original network model, the
experiments highlight that the lightweight WaSR-T remains the most promising
for object monitoring on tsunami buoys, given its low memory requirements.
Researchers can also implement it in other mid-ocean monitoring applications,
such as rigs and marine platforms.
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1 Introduction

The Tsunami Early Warning System (TEWS) [1] relies on a buoy on the
sea surface connected to a water pressure sensor on the seabed via acoustic
communication to detect the potential for tsunami waves. However, a
significant obstacle to this system is that ship propellers approaching the
buoy create noise interference, which can exceed the noise level tolerated
by data transmission with acoustic waves. The absence of an intelligent
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computer vision device on the tsunami buoy that can provide information
about approaching ships and warn the ship to stay away is an obstacle for
the tsunami buoy. This research developed intelligent computer vision to
detect the presence of ships that could interfere with the performance of
acoustic communication. This research focuses on developing an object
recognition network model that does not require significant computational
processes or complex algorithms that require much computational effort
while maintaining a balance between accuracy. The limited space on the
buoy and a battery pack restricts the recognition and computing process.
The system must minimize power consumption while computing to enable
object recognition on embedded devices or computer.

Figure 1 Acoustic communication failure due to ship propeller noise

Current intelligent computer vision methods detect objects by classifying
each pixel in the image using convolutional neural networks, providing
valuable information for understanding the environmental conditions and
detecting objects. Sophisticated convolutional neural networks for
intelligent computer vision object detection have become a well-
established approach in ground-based autonomous vehicles[2],[3],[4],[5].
However, researchers must improve existing networks developed on land
for use in maritime areas.

So, various object recognition network models were developed for
unmanned vessels, such as marine surveys in limited areas[6]. The most
reliable network model currently is the Temporal Water-obstacle



Lightweight WaSR-T Network for Detection Boat 3

Separation and Refinement Network or WaSR-T network with an endocer
and decoder architecture consisting of several information fusion and
feature scaling blocks that extract temporal context from a series of image
frames to distinguish objects from sea surface reflections[7].

Despite the excellent performance of unmanned vessels in recognizing
surface objects for navigation purposes, WaSR-T networks still require
high computing devices[8]. For tsunami buoys, a lighter network is needed
with a balance between accuracy and minimal computational processing
to detect ships approaching the buoy as an integral part of an intelligent
computer vision system in the open sea.

2 Method

Developing a network model for an intelligent vision system consists of
two stages: a dataset creation process and a network model development
process.

A. Dataset Preparation

Detecting surface objects on the high seas with convolutional neural
networks has various challenges, such as object complexity, marine
environmental conditions that are very different from conditions on land,
availability of image data sets with annotations [9], class imbalance to be
detected, anomaly detection, detection constraints for objects of small size,
and model reliability for all sea conditions. In addition, special knowledge
and expertise in the field of maritime imagery can further improve the
effectiveness of convolutional neural network-based object detection in
the open sea.

All images used as training data were taken simultaneously at the tsunami
buoy installation location as part of the maintenance process. This image
was taken from the research ship Baruna Jaya. All images recorded depict
all sea conditions from morning to dusk, both in clear and lousy weather
conditions, so that, as far as possible, all sea conditions can be used as
training data.



4 Wayan Wira Yogantara, et al

Figure 2 Image recording process at the Tsunami Buoy location

After all the images have been collected, a data-cleaning process is carried
out. Here, data selection is carried out where inappropriate or duplicate
data is discarded. Next, resizing is done to adjust the image dimensions
according to the data format. The image annotation process is carried out
after cleaning using the Labelme application. Each image is labeled with
clouds, water, ships, and the associated pixels.

d-labelled : 1 Masks image from manual annotation Normalize mask image for
: processes standard MaSTR1325 format

Manual annotation process with Labelme H

Figure 3 Manual image annotation process

This dataset is divided into 80% training data, 10% validation data and
10% test data.
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Figure 4 Sample Training Dataset.

B. Lightweight WaSR-T Network Development

The most up-to-date object detection network model on the water surface
is the Temporal context Water-obstacle Separation and Refinement
Network or WaSR-T[7], where this network model is used in water surface
autonomous vessel to recognize all objects in front of them so that this
vesel can avoid these objects so as not to be hit, this is the feature we will
use in tsunamis buoy as a network model to recognize objects with a slight
difference that the tsunami buoy will not move away because the position
of the tsunami buoy is tied to the mooring line but will issue an alarm if
the object approaches. By analyzing the WaSR-T network model, we will
make modifications to get a lighter network model.

Distance (D) H

Depth (d)

Sinker

Figure 5 Tsunami Buoy with mooring line and anker
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To get a lightweight network model that can run on a single-board
computer, the encoder blocks in the WaSR-T network model, which
previously used ResNet-101[10], were replaced with MobileNetV3[11].

ResNet-101 requires a high computational process to extract features in
the image. MobileNetV3 has the same function but only requires a low
computing process. MobileNetV3 was developed to run on computer
systems with low memory resources, such as cellular devices.

Unlike standard convolution in ResNet, depth separable convolution
breaks the computation into two distinct steps:

e Deep convolution applies a single convolutional filter to each input
channel, and

e Unidirectional convolution combines the outputs of the deep
convolution into a linear form

Deep convolutional kernels are learnable parameters applied to each input
channel separately to improve model efficiency and reduce computational
processes in MobileNets[12] networks. The system also shares this across
all input channels. Next, researchers use neural architecture search (NAS)
to find the optimal kernel size for deep convolution and to determine the
best architecture that suits low-resource hardware platforms in terms of
size, performance, and latency. Additionally, MobileNetV3 uses squeeze
and excitation (SE)[13] blocks, which pay more attention to relevant
features in each channel during training and improve feature representation
with low memory usage. MobileNet is structured using several units
known as bottleneck blocks (bneck).

The overall architecture of MobileNet is depicted in Figure 6. (a), while
Figure (b) provides a closer look at the internal configuration of the neck
block. MobileNetV1[12] innovatively replaces standard convolutional
operations with depth-separable convolutions in each block, significantly
reducing the number of parameters. Additionally, a residual connection is
introduced between the input and output tensors, as shown in the Figure
below. MobileNetV2[14], the design is further improved by incorporating
expansion and compression steps at the beginning and end of each neck
block, forming what is known as an Inverted Residual Block (IRB). This
configuration is inverted because it connects narrow input and output
tensors (i.e., low channel count) through residual connections, unlike the
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Figure 6 The MobileNet model consists of a set of merged bneck blocks. (a) High-level
overview. (b) Illustration of bneck block

original ResNet CNN model, which connects extended tensors through
residuals.

Introducing an Inverted Residual Block (IRB)[14] in MobileNetV2 is a
game-changer, significantly reducing the computational cost of the model.
The design uses linear activation after filtering the input and output tensors
instead of non-linear activation functions like ReLU to reduce
computation further. Additionally, MobileNetV3 includes a Squeeze-
Exitation (SE)[11] module, as shown in Figure 4.b. Unlike other models
that integrate SE modules as separate blocks in the architecture, such as
ResNet [15], MobileNetV3 integrates them in parallel with IRB
connections. This integration slightly increases model size but the
reassurance of reduced computational cost is a testament to the efficiency
of the model.

The MobileNetV3 SE module implements a new activation function called
h-swish[13]. The h-swish function is a variant of the Swish activation
function, defined as follows:

x
1+e~Px

swish(x) = x.a(fx) = @
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Where o(px) is the sigmoid function, and [ is the trainable parameter. If
=1, it is known as a sigmoid weighted linear unit function. However,
computing this function is computationally expensive. The h-swish
function modifies the Swish activation to improve computational
efficiency and is defined as follows:

ReLU66(x+3) (2)
ReLU activation function, limiting its output to a maximum value of 6, and
the bottleneck block producing an impressive improvement in feature
maps with residual connections and the Squeeze-Exitation module ( SE),
we were inspired to adopt this as the primary backbone model for the

WaSR-T architecture.

h — swish(x) = x

C. Experimental Scenario

In Figure 7, we show the architecture of the proposed Lightweight WaSR-
T network model with all the stages, including its various blocks and input
feature maps. The selected MobileNetV3 layer applies downsampling in
the encoder section to reduce the image size. Upsampling and transposition
convolutions are applied in the decoder section to generate segmentation
masks for each input image.

We chose this stage because it is an activation layer (ReLU) with the
highest convolutional filter bands in its feature map size category (256 x
192, 96 x 128, 48 x 64, et cetera). For example, Stage 2 resizes the image
to 96x128 with 24 bands. Stage 3 resizes the image to 48x64 with 40
bands. Stage 4 resizes the image to 16x12 with 160 bands. Finally, Stage
5 resizes the image to 16 x 12 with 960. After that, the Temporal Context
Module (TCM) extracts temporal information from the context and target
frame embeddings. It then combines this information with the target frame
embedding via concatenation. TCM reduces the dimensions of the feature
map per frame by a specific process, which is designed to preserve the
structure and quantity of input channels to the decoder. This procedure is
processed using shared 1x1 convolutional layers to project feature maps
per frame into N/2 dimensions per frame.

After that, the decoder upsets and merges with the previous output layer
and each MobileNetV3 Stage. The output form from Stage 2 goes to the
Feature Fusion Module (FFM) in the decoder section to combine low-level
and high-level features. The output form follows Stage 3, as it directly
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Figure 7 Lightweight WaSR-T

features from the bottom of the encoder to Attention Refinement Modules
2 (ARM2), the decoder. After Stage 5, the process follows the original.
Input and output images are the same size. The output of the proposed
model is a 512 x 384 image mask segmentation with three bands,
showcasing our model's impressive ability to detect three separate classes.
The table below provides a detailed list of layers and the number of
parameters in each decoding layer of our proposed model.

Fine-tuning process and feature extraction phase are described in this
section. The main goal is to extract relevant image embeddings by relying
on models trained on different marine image datasets. Meanwhile, the
image embeddings extracted in this phase are fed into the feature selection
phase, which will be discussed in the next section. Compared with
previous studies, the feature selection phase uses adam optimization
technique to improve recognition accuracy, select only important features,
and reduce the feature representation space of the entire proposed
framework.
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Table 1 Lightweight WaSR-T layer

Part Operation (Block) Input Shape Output Shape
Input Layer (Rescalling, Conv2D) | 512 x384x3 | 256 x 192 x 16
Encoder Downsampling#1 (bneck, 3x3) 256 x192x16 | 128 x 96x 24
(Base Model: | Downsampling#2 (bneck, 3x3) 128 x96 x 24 | 64 x48 x40
MobileNetV3 | Downsampling#3 (bneck 3 x 3) 64 x 48 x 40 32 x24 x 80
Large) Downsampling#4 (bneck 5 x 5) 32 x24x80 16 x 12 x 160
Downsampling#5 (bneck 5 x 5) 16 x12x160 | 16 x12 x 960
TemporalContextModule TCM 16 x12x960 | 16 x12 x 960
AttentionRefinementModule 16 x12x960 | 32x24x80
ARM1
Decoder AttentionRefinementModule 32x24x80 32 x24x80
ARM?2
FeatureFusionModule FFM | 64 x 48 x 40 64 x 48 x 40
(upsampl
ASP 128 x 96x 24 | 128 x 96x 24

We trained the proposed Lightweight WaSR-T network using 290 image
datasets, which include previous sequential frames with T=5 and
corresponding image annotations and divide the training dataset into mini-
batches of 6 images each to enhance the efficiency of the training process.
The input image size for this training is 512 x 384 x 3. The Adam (Adaptive
Moment Estimation) optimizer, known for its adaptability, uses square
gradients to adjust the learning rate. It tracks the moving average of
gradients (an approach called momentum) and can also assess moments
adaptively. This training run NVIDIA DGX1 and implemented using
python 2.0.0 and torch-vision 0.15 library with following parameters.

Table 2 Training parameters

Parameter Value
Learning rate 10706
Learning rate decay 0.9
Weights decay 10706
Epoch 500
Batch size 6
Momentum value 0.9
Patience 50
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With the parameters above, the best weight is produced when the step
reaches 10184 with an epoch value of 290, a train/loss value of at least
0.0009, and a value of 0.995 for Val/Accuracy.
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Figure 9 Val/Accuracy Value Lightweight WaSR-T training
3 Result and Discussion

In general, to evaluate the performance of a water surface object detection
network, MODS Benchmark[16] can be used
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With the new weight, we compared the original WaSR-T with the light and
evaluated it using subjective assessments[17] and [18] with the following
criteria:

e If the network output produces a boat class label that perfectly
overlaps with the boat's pixel label location and area parallel to the
boat's GT, then the subjective assessment is a true positive (TP)

o If the network output produces a boat class label with insufficient
overlap with the location and the pixel label area of the boat is
slightly spread out relative to the boat's GT, then the subjective
assessment is a false positive (FP)

e If the network output assigns a boat class label outside the correct
location, and the pixel label area of the boat is scattered relative to
the GT boat, the subjective assessment classifies it as a false
negative (FN)

We evaluate the overall metrics to measure the model network
performance between the Lightweight WaSR-T and the native WaSR-T
using several vital parameters.:

. precision Pr=TP/(TP+FP)
. recall Re=TP/(TP+FN)

P Q
- -

Figure 10 Sample Comparison image segmentation of Lightweight WaSR-T and
original

Target Frame

WaSR-T

Lightweight WaSR-T
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According to the qualitative results in Table 3, the Lightweight WaSR-T,
when assessing a true positive (TP), assigns a boat class label identical to
the original and thoroughly detects the boat's pixel label area. The boat
pixel label area is fully detected. If the network output produces a
subjective assessment as FP, the Lightweight WaSR-T produces the boat
pixel label area slightly spread out or smaller than the actual boat label.

Table 3 Computational load parameters of both network models run on ASUS

ExpertBook
Model Test %CPU | %Memory Total P.rocessmg Ra.te
Image Time [s/it]
WaSR-T 140 190 13.2 1:13:56 20.07
Lightweight WaSR-T 140 160 43 0:02:45 1.33

Table 4 Qualitative results of WaSR-T and Lightweight WaSR-T

Model True Positive False False Negative | Recall | Precision
(TP) Positive (FP) (FN) (Re) (Pr)
WaSR-T 94 40 15 70.15% | 86.24%
Lightweight o o
WaSR-T 77 49 14 61.11% | 86.14%

In subjective assessment as FP, the number of false detections produced by
the original is smaller than the Lightweight WaSR-T Network. The most
common source of false detections is due to water reflections on the water
surface or the interface between the water surface and the sky. The network
still detects the boat's pixel label area in this case. However, the true value
of the system lies in its ability to use the detected ship's class label to warn
approaching ships, thereby enhancing safety operation the tsunami buoy.
Therefore, the quantitative results of Lightweight WaSR-T with subjective
assessment as TP and FN are useful for intelligent computer vision for
tsunami buoy.

4 Conclusion

This discussion has covered developing and implementing the proposed
Lightweight WaSR-T for detecting ships approaching tsunami buoys as an
integral part of an intelligent computer vision system in the open ocean
domain. Based on quantitative results and computational load evaluation,
researchers designed Lightweight WaSR-T as the main component of an
intelligent computer vision system on a tsunami buoy, promising further
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implementation on single-board computing devices with small
architectural components, such as Jetson Nano or similar.
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