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Abstract. A tsunami early warning system using buoys is vital for early warning 

of tsunami waves. Its vulnerability to tampering and even vandalism emphasizes 

the need for an object detection vision system for tsunami buoys. Moreover, 

researchers typically position these buoys at considerable distances from the 

seashore. The current tsunami early warning system lacks an object detection 

system capable of providing warnings about the presence of other disturbing 

objects. Hence, any system vision must incorporate object detection with energy 

efficiency. This research studies various efficient object detection network models 

that support object detection systems for these tsunami buoys. WaSR-T model 

network with temporal context was developed and equipped with a lightweight 

encoder MobileNetV3 to run on a single board computer.  Although the test results 

show less than optimal performance than the original network model, the 

experiments highlight that the lightweight WaSR-T remains the most promising 

for object monitoring on tsunami buoys, given its low memory requirements. 

Researchers can also implement it in other mid-ocean monitoring applications, 

such as rigs and marine platforms. 

Keywords: tsunami early warning; bouy; system vision; object detection;WaSR-T; 

MobileNetV3. 

1 Introduction 

The Tsunami Early Warning System (TEWS) [1] relies on a buoy on the 

sea surface connected to a water pressure sensor on the seabed via acoustic 

communication to detect the potential for tsunami waves. However, a 

significant obstacle to this system is that ship propellers approaching the 

buoy create noise interference, which can exceed the noise level tolerated 

by data transmission with acoustic waves. The absence of an intelligent 
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computer vision device on the tsunami buoy that can provide information 

about approaching ships and warn the ship to stay away is an obstacle for 

the tsunami buoy. This research developed intelligent computer vision to 

detect the presence of ships that could interfere with the performance of 

acoustic communication. This research focuses on developing an object 

recognition network model that does not require significant computational 

processes or complex algorithms that require much computational effort 

while maintaining a balance between accuracy. The limited space on the 

buoy and a battery pack restricts the recognition and computing process. 

The system must minimize power consumption while computing to enable 

object recognition on embedded devices or computer. 

 

Figure 1 Acoustic communication failure due to ship propeller noise 

Current intelligent computer vision methods detect objects by classifying 

each pixel in the image using convolutional neural networks, providing 

valuable information for understanding the environmental conditions and 

detecting objects. Sophisticated convolutional neural networks for 

intelligent computer vision object detection have become a well-

established approach in ground-based autonomous vehicles[2],[3],[4],[5]. 

However, researchers must improve existing networks developed on land 

for use in maritime areas. 

So, various object recognition network models were developed for 

unmanned vessels, such as marine surveys in limited areas[6]. The most 

reliable network model currently is the Temporal Water-obstacle 
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Separation and Refinement Network or WaSR-T network with an endocer 

and decoder architecture consisting of several information fusion and 

feature scaling blocks that extract temporal context from a series of image 

frames to distinguish objects from sea surface reflections[7]. 

Despite the excellent performance of unmanned vessels in recognizing 

surface objects for navigation purposes, WaSR-T networks still require 

high computing devices[8]. For tsunami buoys, a lighter network is needed 

with a balance between accuracy and minimal computational processing 

to detect ships approaching the buoy as an integral part of an intelligent 

computer vision system in the open sea. 

2 Method 

Developing a network model for an intelligent vision system consists of 

two stages: a dataset creation process and a network model development 

process. 

A. Dataset Preparation 

Detecting surface objects on the high seas with convolutional neural 

networks has various challenges, such as object complexity, marine 

environmental conditions that are very different from conditions on land, 

availability of image data sets with annotations [9], class imbalance to be 

detected, anomaly detection, detection constraints for objects of small size, 

and model reliability for all sea conditions. In addition, special knowledge 

and expertise in the field of maritime imagery can further improve the 

effectiveness of convolutional neural network-based object detection in 

the open sea. 

All images used as training data were taken simultaneously at the tsunami 

buoy installation location as part of the maintenance process. This image 

was taken from the research ship Baruna Jaya. All images recorded depict 

all sea conditions from morning to dusk, both in clear and lousy weather 

conditions, so that, as far as possible, all sea conditions can be used as 

training data. 
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Figure 2 Image recording process at the Tsunami Buoy location 

After all the images have been collected, a data-cleaning process is carried 

out. Here, data selection is carried out where inappropriate or duplicate 

data is discarded. Next, resizing is done to adjust the image dimensions 

according to the data format. The image annotation process is carried out 

after cleaning using the Labelme application. Each image is labeled with 

clouds, water, ships, and the associated pixels. 

 

Figure 3 Manual image annotation process 

This dataset is divided into 80% training data, 10% validation data and 

10% test data. 
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Figure 4 Sample Training Dataset. 

B. Lightweight WaSR-T Network Development 

The most up-to-date object detection network model on the water surface 

is the Temporal context Water-obstacle Separation and Refinement 

Network or WaSR-T[7], where this network model is used in water surface 

autonomous vessel to recognize all objects in front of them so that this 

vesel can avoid these objects so as not to be hit, this is the feature we will 

use in tsunamis buoy as a network model to recognize objects with a slight 

difference that the tsunami buoy will not move away because the position 

of the tsunami buoy is tied to the mooring line but will issue an alarm if 

the object approaches. By analyzing the WaSR-T network model, we will 

make modifications to get a lighter network model. 

 

Figure 5 Tsunami Buoy with mooring line and anker 
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To get a lightweight network model that can run on a single-board 

computer, the encoder blocks in the WaSR-T network model, which 

previously used ResNet-101[10], were replaced with MobileNetV3[11]. 

ResNet-101 requires a high computational process to extract features in 

the image. MobileNetV3 has the same function but only requires a low 

computing process. MobileNetV3 was developed to run on computer 

systems with low memory resources, such as cellular devices. 

Unlike standard convolution in ResNet, depth separable convolution 

breaks the computation into two distinct steps: 

• Deep convolution applies a single convolutional filter to each input 

channel, and 

• Unidirectional convolution combines the outputs of the deep 

convolution into a linear form 

Deep convolutional kernels are learnable parameters applied to each input 

channel separately to improve model efficiency and reduce computational 

processes in MobileNets[12] networks. The system also shares this across 

all input channels. Next, researchers use neural architecture search (NAS) 

to find the optimal kernel size for deep convolution and to determine the 

best architecture that suits low-resource hardware platforms in terms of 

size, performance, and latency. Additionally, MobileNetV3 uses squeeze 

and excitation (SE)[13] blocks, which pay more attention to relevant 

features in each channel during training and improve feature representation 

with low memory usage. MobileNet is structured using several units 

known as bottleneck blocks (bneck). 

The overall architecture of MobileNet is depicted in Figure 6. (a), while 

Figure (b) provides a closer look at the internal configuration of the neck 

block. MobileNetV1[12] innovatively replaces standard convolutional 

operations with depth-separable convolutions in each block, significantly 

reducing the number of parameters. Additionally, a residual connection is 

introduced between the input and output tensors, as shown in the Figure 

below. MobileNetV2[14], the design is further improved by incorporating 

expansion and compression steps at the beginning and end of each neck 

block, forming what is known as an Inverted Residual Block (IRB). This 

configuration is inverted because it connects narrow input and output 

tensors (i.e., low channel count) through residual connections, unlike the  
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Figure 6 The MobileNet model consists of a set of merged bneck blocks. (a) High-level 

overview. (b) Illustration of bneck block 

original ResNet CNN model, which connects extended tensors through 

residuals. 

Introducing an Inverted Residual Block (IRB)[14] in MobileNetV2 is a 

game-changer, significantly reducing the computational cost of the model. 

The design uses linear activation after filtering the input and output tensors 

instead of non-linear activation functions like ReLU to reduce 

computation further. Additionally, MobileNetV3 includes a Squeeze-

Exitation (SE)[11] module, as shown in Figure 4.b. Unlike other models 

that integrate SE modules as separate blocks in the architecture, such as 

ResNet [15], MobileNetV3 integrates them in parallel with IRB 

connections. This integration slightly increases model size but the 

reassurance of reduced computational cost is a testament to the efficiency 

of the model. 

The MobileNetV3 SE module implements a new activation function called 

h-swish[13]. The h-swish function is a variant of the Swish activation 

function, defined as follows: 

𝑠𝑤𝑖𝑠ℎ(𝑥) = 𝑥. 𝜎(𝛽𝑥) =  
𝑥

1+𝑒−𝛽𝑥  (1) 
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Where σ(βx) is the sigmoid function, and β is the trainable parameter. If β 

= 1, it is known as a sigmoid weighted linear unit function. However, 

computing this function is computationally expensive. The h-swish 

function modifies the Swish activation to improve computational 

efficiency and is defined as follows: 

ℎ − 𝑠𝑤𝑖𝑠ℎ(𝑥) = 𝑥
𝑅𝑒𝐿𝑈6(𝑥+3)

6
   (2) 

ReLU activation function, limiting its output to a maximum value of 6, and 

the bottleneck block producing an impressive improvement in feature 

maps with residual connections and the Squeeze-Exitation module ( SE), 

we were inspired to adopt this as the primary backbone model for the 

WaSR-T architecture. 

C. Experimental Scenario 

In Figure 7, we show the architecture of the proposed Lightweight WaSR-

T network model with all the stages, including its various blocks and input 

feature maps. The selected MobileNetV3 layer applies downsampling in 

the encoder section to reduce the image size. Upsampling and transposition 

convolutions are applied in the decoder section to generate segmentation 

masks for each input image. 

We chose this stage because it is an activation layer (ReLU) with the 

highest convolutional filter bands in its feature map size category (256 × 

192, 96 × 128, 48 × 64, et cetera). For example, Stage 2 resizes the image 

to 96×128 with 24 bands. Stage 3 resizes the image to 48×64 with 40 

bands. Stage 4 resizes the image to 16×12 with 160 bands. Finally, Stage 

5 resizes the image to 16 × 12 with 960. After that, the Temporal Context 

Module (TCM) extracts temporal information from the context and target 

frame embeddings.  It then combines this information with the target frame 

embedding via concatenation. TCM reduces the dimensions of the feature 

map per frame by a specific process, which is designed to preserve the 

structure and quantity of input channels to the decoder. This procedure is 

processed using shared 1×1 convolutional layers to project feature maps 

per frame into N/2 dimensions per frame. 

After that, the decoder upsets and merges with the previous output layer 

and each MobileNetV3 Stage. The output form from Stage 2 goes to the 

Feature Fusion Module (FFM) in the decoder section to combine low-level 

and high-level features. The output form follows Stage 3, as it directly  
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Figure 7 Lightweight WaSR-T 

features from the bottom of the encoder to Attention Refinement Modules 

2 (ARM2), the decoder.  After Stage 5, the process follows the original. 

Input and output images are the same size. The output of the proposed 

model is a 512 × 384 image mask segmentation with three bands, 

showcasing our model's impressive ability to detect three separate classes. 

The table below provides a detailed list of layers and the number of 

parameters in each decoding layer of our proposed model. 

Fine-tuning process and feature extraction phase are described in this 

section. The main goal is to extract relevant image embeddings by relying 

on models trained on different marine image datasets. Meanwhile, the 

image embeddings extracted in this phase are fed into the feature selection 

phase, which will be discussed in the next section. Compared with 

previous studies, the feature selection phase uses adam optimization 

technique to improve recognition accuracy, select only important features, 

and reduce the feature representation space of the entire proposed 

framework. 
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Table 1 Lightweight WaSR-T layer 

Part Operation (Block) Input Shape Output Shape 

Encoder 

(Base Model: 

MobileNetV3 

Large) 

Input Layer (Rescalling, Conv2D) 512 x 384 x 3 256 x 192 x 16 

Downsampling#1 (bneck, 3x3) 256 x 192 x 16 128 x 96x 24 

Downsampling#2 (bneck, 3x3) 128 x 96 x 24 64 x 48 x 40 

Downsampling#3 (bneck 3 x 3) 64 x 48 x 40 32 x 24 x 80 

Downsampling#4 (bneck 5 x 5) 32 x 24 x 80 16 x 12 x 160 

Downsampling#5 (bneck 5 x 5) 16 x 12 x 160  16 x 12 x 960 

Decoder 

TemporalContextModule TCM 16 x 12 x 960 16 x 12 x 960 

AttentionRefinementModule 

ARM1  

16 x 12 x 960 32 x 24 x 80 

AttentionRefinementModule 

ARM2  

32 x 24 x 80 32 x 24 x 80 

FeatureFusionModule FFM 

(upsampl 

64 x 48 x 40 64 x 48 x 40 

ASP 128 x 96x 24 128 x 96x 24 

We trained the proposed Lightweight WaSR-T network using 290 image 

datasets, which include previous sequential frames with T=5 and 

corresponding image annotations and divide the training dataset into mini-

batches of 6 images each to enhance the efficiency of the training process.  

The input image size for this training is 512 x 384 x 3. The Adam (Adaptive 

Moment Estimation) optimizer, known for its adaptability, uses square 

gradients to adjust the learning rate. It tracks the moving average of 

gradients (an approach called momentum) and can also assess moments 

adaptively. This training run NVIDIA DGX1 and implemented using 

python 2.0.0 and torch-vision 0.15 library with following parameters. 

Table 2 Training parameters 

Parameter Value 

Learning rate 10−0.6 

Learning rate decay 0.9 

Weights decay 10−0.6 

Epoch 500 

Batch size 6 

Momentum value 0.9 

Patience 50 
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With the parameters above, the best weight is produced when the step 

reaches 10184 with an epoch value of 290, a train/loss value of at least 

0.0009, and a value of 0.995 for Val/Accuracy. 

 

Figure 8 Train/loss Value Lightweight WaSR-T training 

 

Figure 9 Val/Accuracy Value Lightweight WaSR-T training 

3 Result and Discussion 

In general, to evaluate the performance of a water surface object detection 

network, MODS Benchmark[16] can be used 
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With the new weight, we compared the original WaSR-T with the light and 

evaluated it using subjective assessments[17] and [18] with the following 

criteria: 

• If the network output produces a boat class label that perfectly 

overlaps with the boat's pixel label location and area parallel to the 

boat's GT, then the subjective assessment is a true positive (TP) 

• If the network output produces a boat class label with insufficient 

overlap with the location and the pixel label area of the boat is 

slightly spread out relative to the boat's GT, then the subjective 

assessment is a false positive (FP) 

• If the network output assigns a boat class label outside the correct 

location, and the pixel label area of the boat is scattered relative to 

the GT boat, the subjective assessment classifies it as a false 

negative (FN) 

We evaluate the overall metrics to measure the model network 

performance between the Lightweight WaSR-T and the native WaSR-T 

using several vital parameters.: 

• precision Pr= TP/(TP+FP)  

• recall Re=TP/(TP+FN) 

 

 

Figure 10 Sample Comparison image segmentation of  Lightweight WaSR-T and 

original 
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According to the qualitative results in Table 3, the Lightweight WaSR-T, 

when assessing a true positive (TP), assigns a boat class label identical to 

the original and thoroughly detects the boat's pixel label area. The boat 

pixel label area is fully detected.  If the network output produces a 

subjective assessment as FP, the Lightweight WaSR-T produces the boat 

pixel label area slightly spread out or smaller than the actual boat label. 

Table 3 Computational load parameters of both network models run on ASUS 

ExpertBook 

Model 
Test 

Image 
%CPU %Memory 

Total Processing 

Time 

Rate 

[s/it] 

WaSR-T 140 190 13.2 1:13:56 20.07 

Lightweight WaSR-T 140 160 4.3 0:02:45 1.33 

 

Table 4 Qualitative results of WaSR-T and Lightweight WaSR-T 

Model 
True Positive 

(TP) 

False 

Positive (FP) 

False Negative 

(FN) 

Recall 

(Re) 

Precision 

(Pr) 

WaSR-T 94 40 15 70.15% 86.24% 

Lightweight 

WaSR-T 
77 49 14 61.11% 86.14% 

 

In subjective assessment as FP, the number of false detections produced by 

the original is smaller than the Lightweight WaSR-T Network. The most 

common source of false detections is due to water reflections on the water 

surface or the interface between the water surface and the sky. The network 

still detects the boat's pixel label area in this case. However, the true value 

of the system lies in its ability to use the detected ship's class label to warn 

approaching ships, thereby enhancing safety operation the tsunami buoy. 

Therefore, the quantitative results of Lightweight WaSR-T with subjective 

assessment as TP and FN are useful for intelligent computer vision for 

tsunami buoy. 

4 Conclusion 

This discussion has covered developing and implementing the proposed 

Lightweight WaSR-T for detecting ships approaching tsunami buoys as an 

integral part of an intelligent computer vision system in the open ocean 

domain.  Based on quantitative results and computational load evaluation, 

researchers designed Lightweight WaSR-T as the main component of an 

intelligent computer vision system on a tsunami buoy, promising further 
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implementation on single-board computing devices with small 

architectural components, such as Jetson Nano or similar. 

References 

[1] L. Zhao, F. Yu, J. Hou, P. Wang, and T. Fan, “The role of tsunami buoy 

played in tsunami warning and its application in South China Sea,” Theor. 

Appl. Mech. Lett., vol. 3, no. 3, p. 032002, 2013, doi: 10.1063/2.1303202. 

[2] Y. Peng, Y. Qin, X. Tang, Z. Zhang, and L. Deng, “Survey on Image and 

Point-Cloud Fusion-Based Object Detection in Autonomous Vehicles,” 

IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12, pp. 22772–22789, Dec. 

2022, doi: 10.1109/TITS.2022.3206235. 

[3] L. Peng, H. Wang, and J. Li, “Uncertainty Evaluation of Object Detection 

Algorithms for Autonomous Vehicles,” Automot. Innov., vol. 4, no. 3, pp. 

241–252, Aug. 2021, doi: 10.1007/s42154-021-00154-0. 

[4] N. GENGEÇ, O. EKER, H. ÇEVİKALP, A. YAZICI, and H. S. YAVUZ, 

“Visual object detection for autonomous transport vehicles in smart 

factories,” TURKISH J. Electr. Eng. Comput. Sci., vol. 29, no. 4, pp. 2101–

2115, Jul. 2021, doi: 10.3906/elk-2008-62. 

[5] S. A. Khalil, S. Abdul-Rahman, S. Mutalib, and N. M. A. A. Dazlee, 

“Object Detection for Autonomous Vehicles with Sensor-based 

Technology Using YOLO,” Int. J. Intell. Syst. Appl. Eng., vol. 10, no. 1, 

pp. 129–134, Mar. 2022, doi: 10.18201/ijisae.2022.276. 

[6] B. Bovcon and M. Kristan, “WaSR—A Water Segmentation and 

Refinement Maritime Obstacle Detection Network,” IEEE Trans. Cybern., 

vol. 52, no. 12, pp. 12661–12674, Dec. 2022, doi: 

10.1109/TCYB.2021.3085856. 

[7] L. Žust and M. Kristan, “Temporal Context for Robust Maritime Obstacle 

Detection,” Mar. 2022, [Online]. Available: 

http://arxiv.org/abs/2203.05352 

[8] M. Teršek, L. Žust, and M. Kristan, “eWaSR -- an embedded-compute-

ready maritime obstacle detection network,” Apr. 2023, [Online]. 

Available: http://arxiv.org/abs/2304.11249 

[9] B. Bovcon, J. Muhovic, J. Pers, and M. Kristan, “The MaSTr1325 dataset 

for training deep USV obstacle detection models,” in 2019 IEEE/RSJ 

International Conference on Intelligent Robots and Systems (IROS), Nov. 

2019, pp. 3431–3438. doi: 10.1109/IROS40897.2019.8967909. 

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 

recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern 

Recognit., vol. 2016-Decem, pp. 770–778, Dec. 2016, doi: 

10.1109/CVPR.2016.90. 

[11] A. Howard et al., “Searching for MobileNetV3,” May 2019, [Online]. 

Available: http://arxiv.org/abs/1905.02244 



Lightweight WaSR-T Network for Detection Boat  15 

 

 

[12] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural 

Networks for Mobile Vision Applications,” Apr. 2017, [Online]. 

Available: http://arxiv.org/abs/1704.04861 

[13] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Networks,” in 2018 

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 

2018, pp. 7132–7141. doi: 10.1109/CVPR.2018.00745. 

[14] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, 

“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018 

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 

2018, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474. 

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 

Recognition,” Dec. 2015, [Online]. Available: 

http://arxiv.org/abs/1512.03385 

[16] B. Bovcon, J. Muhovič, D. Vranac, D. Mozetič, J. Perš, and M. Kristan, 

“MODS -- A USV-oriented object detection and obstacle segmentation 

benchmark,” May 2021, doi: 10.1109/TITS.2021.3124192. 

[17] Z. Chen and H. Zhu, “Visual Quality Evaluation for Semantic 

Segmentation: Subjective Assessment Database and Objective Assessment 

Measure,” IEEE Trans. Image Process., vol. 28, no. 12, pp. 5785–5796, 

Dec. 2019, doi: 10.1109/TIP.2019.2922072. 

[18] G. Csurka, D. Larlus, and F. Perronnin, “What is a good evaluation 

measure for semantic segmentation?,” in Procedings of the British 

Machine Vision Conference 2013, 2013, pp. 32.1-32.11. doi: 

10.5244/C.27.32. 

 


