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Abstract. Batteries are energy storage systems used in almost every aspect. As the
battery will degrade over time as it is used, the Battery Management System
(BMS) needs to be able to monitor its health so that the right battery replacement
time can be predicted. Several State-of-Health (SoH) estimation methods have
been studied, one of which is the data-driven method. This paper proposed SoH
estimation for universal lithium-ion batteries using supervised machine learning:
XGBoost that trained with only one battery material, which is Lihtium-Nickel-
Cobalt-Alumunium (NCA). From Model evaluation results show that the model is
able to predict well on other data with the same material as the training data with
RMSE 1.4320% MAE 0.9174% and MAPE 0.0100%. However, to make
predictions on other types of material data, the model has difficulty because
XGBoost is not able to make good predictions outside of the training data.

Keywords: battery; battery management system; lithium-ion; state-of-health; supervised
machine learning, xgboost.

1 Introduction

Batteries are energy storage media commonly used in daily life applications such
as electronic devices, backup energy systems on the power grid, and electric
vehicles. In addition to the support of electrical energy providers, the use of
batteries in daily applications also requires a Battery Management System (BMS)
as a management system to monitor and maximize the battery's performance.
BMS will check battery parameters such as voltage, current, and internal
temperature during the charging and draining process and estimate battery
conditions such as actual capacity and battery health [1]. State of Health (SoH)
indicates the level of battery degradation or available capacity compared to the
battery capacity in new condition. The types of battery degradation namely Loss
of Lithium Inventory (LLI) and Loss of Active Material (LAM) cause a decrease
in capacity [2]
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Estimation of SoH parameter values generally consists of three methods, direct
calculation methods, modeling-based methods, and data-driven methods [3]. The
direct calculation method will measure the value of the open circuit voltage which
will then be compared with the voltage and capacity curve. While the model-
based method compares the voltage, current, and temperature values with the
modeling results that have been made. The data-driven method is analogous to a
'black box' that performs SoH estimation [3].

The data-driven method uses Machine Learning to estimate SoH, so it requires a
large database on the charge and discharge cycle of a battery. The large database
is also because in actual conditions there are differences in operating conditions
from each battery use, so the resulting degradation patterns vary [4]. With
existing historical data, it is expected to be able to provide an accurate estimate
of the degradation pattern of the State of Health of the battery.

Based on the results of the literature study, it is found that there have been
previous studies that use various machine learning models such as extreme
learning, self-supervised, and deep neural networks. Each of them uses different
features as parameters in the estimator. In SoH estimation research by Pan, Rui
in 2023 using up to 15 Health Features (HFs), with the resulting RMSE value in
the range of 1,168 to 2,290. Then research from Chen, Si-Zhe in 2023 [5] only
used 4 Health Features with RMSE results in the range of 0.56 to 0.96. This shows
that it is necessary to choose features that have a good correlation with KK and
able to produce accurate values.

In this study, the estimation of battery SoH was carried out using the Supervised
Machine Learning method, where the Supervised method provides the speed of
the learning process on a large database and already has a label on the work
parameters that have been measured so that it can minimize the resources used.

2 Material and Data Understanding

This study used data derived from widely published battery research results.
There are three types of battery materials from three different data sources.

2.1  Lithium Nickel-Cobalt-Aluminum Oxide (NCA)

This type of NCA battery was obtained from Jost, Dominik et al in 2021 [6],
manufactured by Samsung (INR18650-35E) with a nominal voltage of 3.6V and
a nominal capacity of 3.4Ah. In this database contains 28 pcs high energy
NCA/C+Si cycle aging test, and every battery performed the same profile test
which is a series of cycling tests and checkup tests. In the cycling test the battery
was charged with CCCV at 1.02 A current until 4.05V and 0.068 A cutoff.
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For this study, the battery data used for the data training is a battery with 1D 020,
and ID 027 for the evaluation process. The discharge current varies in every cycle,
as seen in Figure 1, maximum discharge current at 10A, and charging current
around 2A.

Current (A)
1 |
H N o N ES o
L L L

|
o

|
]
L

U
-
o

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
Number of rows le6

Figure 1 Battery current discharge from partial data of NCA ID 020
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Figure 2 Battery current discharge from partial data of NCA 1D 027

2.2  Lithium Cobalt Oxide (LCO)

This LCO battery data from a fast charging test research by Gun, Define et al in
2015 [7] from Berkeley University, with four cell ID were performed several
CCCV cycles that gradually increased in C-rates to examine its behavior. Then,
MCC, CP-CV, and Boostcharge cycles at various C-rates with an additional 1C
CCCYV baseline capacity test. The batteries were manufactured by Sanyo (18650)
with a nominal capacity of 2.6 Ah and a nominal voltage of 3.7 V.

In this paper, the LCO ID 4 is use as evaluation data. The battery discharge profile
used a constant current 2.5A in every cycle as seen in Figure 2.
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Figure 3 Battery current discharge data of LCO ID 4

2.3 Lithium Iron Phosphate (LFP).

This LFP battery that used in this paper was provided by Toyota Research
Institute from Severson et al in 2019 [8], and consists of 124 commercial lithium-
ion batteries manufactured by A123 Systems (APR18650M1A) were cycled to
failure under different fast-charging conditions. The cell have a nominal capacity
of 1.1 Ah and a nominal voltage of 3.3 V.

The LFP ID 47 use as evaluation data has discharged current profile as shown in

Figure 3. The discharge current gradually increased with peak at 4A, and slowly
decreased before it drained.
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Figure 4 Battery current discharge data of LFP 47

3 Methodology

The study runs in few step including data preparation, model training and
evaluation process.
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Figure 5 Reasearch Methodology

3.1  Data Preparation

Data preparation in this study consists of five steps. The first step is data
conversion and compression. The collected raw data needs to be converted from
its original file to be processed in the pandas Python library. The parquet
extension was chosen because it can store data with a smaller memory, making it
easier for the computing device to process data at low cost.

The next step is feature creation. Raw data already has several features from data
acquisition, including Voltage, Current, Time, and Temperature, which are then
used to create new features.

In this study, feature extraction based on Incremental Capacity Analysis (ICA)
techniques was carried out to investigate the battery degradation mechanism [11].
This ICA technique is used by comparing changes in charge/discharge capacity
with changes in voltage [12].

— 40 _ A _ Qi=Qi-1)
IcA = av -~ AV T (Vi=Vi_q) (1)
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The ICA can be obtained from the constant current (CC) charging curve of the
battery [13]. The results of the calculation of the ICA will form a curve in relation
to the voltage during constant current charging. From the ICA curve can be
obtained peak shape values and variations in the position of the peak which is
closely related to the decrease in battery capacity [12]. In a study conducted by
Wang, Guangfeng [14], it was shown that there is a high correlation between
health features such as the position and size of the IC/DV peak and SOH [14].
From the Incremental Capacity Analysis curve generation process as shown in
Figure 6, several features can be obtained, the first is 'max_ica' as the ICA value
of the peak of the curve, the secondly 'voltage atmaxica' as the voltage value
when the peak value is formed, and the last is 'peak_area' as the peak area under
the curve with a voltage range of £0.025V from 'voltage _atmaxica'.
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Figure 6 ICA Curve of NCA-020 Charging Data

The SoH feature is calculated using the actual value of the battery capacity at a
given cycle (C,.¢) compared to the nominal capacity when the battery is in new
condition (Cpew)-

SoH = fact )

Cnew

The third step is Feature Extraction, where existing feature data is selected to be
used in the training data. In this research there are several features used based on
ICA including ‘voltage atmaxica’, ‘voltage atmaxica’, and ‘peak area’. And
two features that has low correlation to SoH are dQ_mean as the mean of capacity
differences and temp_mean as the mean of temperature during the charging or
discharging.

The fourth step is Data Cleaning, which is intended to remove noise in the data
that can be caused by measurement errors or conditions that are not ideal during
data acquisition.

Using correlation function from sklearn, the correlation of health features can be
obtained as shown in the table below.



State-Of-Health Estimation for Lithium-lon Batteries 7

Table 1 Features Correlation with SOH

Feature Correlation
max_ica 0.98
voltage_atmaxica -0.88
peak_area 0.98
dQ_mean 0.69
temp_mean -0.64

From the 5 health features that have been determined, five feature combinations
are made to be used as experimental variations in this study. Here are the feature
combinations shown in the table below.

Table 2 Feature Combinations

Feature Combination  Health Features

Name
KF1 max_ica; voltage_atmaxica; peak_area
KF2 max_ica; voltage_atmaxica; peak_area; dQ_mean
KF3 max_ica; voltage_atmaxica; peak_area; dQ_mean; temp_mean

3.2  XGBoost Model Training

To build State-of-Health estimator, this paper uses Supervised Machine Learning
with XGBoost Regressor as its algorithm. XGBoost is claimed to run faster up to
ten times than other popular algorithms [9]. This is considered because the
amount of battery data obtained as training data is quite large, so it is expected to
require low computational costs. In another study by Chen, Si-Zhe. 2023 [5],
XGBoost is the algorithm that has the smallest error as an estimator compared to
RF, SVR, and KRR.

XGBoost uses hyperparameter to control the training process and the complexity
of the resulting model. In this study use hyperparameter: objective, alpha,
lambda, learning_rate, max_depth, and n_estimators.

3.3 Evaluation Process

In this Evaluation Step, the trained model estimate state-of-health with the
Evaluation Data. The evaluastion metrics used in this research is RMSE, MAE
and MAPE.
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RMSE: Root Mean Squared Error

RMSE = <3N, & = 97 3)
MAE: Mean Absolute Error

MAE = S3IL11Gi =99 4
MAPE: Mean Absolute Percentage Error
()

There are three different data for the evaluation from each material, the NCA
battery with ID 027, LFP ID 47, and LCO ID 4 which represent three different
battery materials.

MAPE = 100x >y |29
n Vi

4 Results and Discussion

Each model of SoH estimator trained with discharging data is through the
evaluation process with battery data that has different material types.

In the initial stage, after the data is processed from data preparation stage, a
hyperparameter search for XGBoost is carried out using the GridSearch function,
where the computer automatically iterate using the XGBoost algorithm to
determine the best hyperparameter that gives the minimum error. The computing
device used in this research has a specification of 8 CPU Cores, and 16 Threads,
with a base clock up to 4Ghz with 16GB RAM. The XGBoost computation used
is CPU-based.

These hyperparameters used in all models made, the results of the selected
hyperparameters include: ‘alpha: 0.01, 'lambda": 0.1, ‘learning_rate 0.3,
'max_depth": 5, 'n_estimators: 200, 'objective’ 'reg:squarederror'. After the
hyperparameters have been determined, the estimator trained using training data
on three different models with different feature combinations. The training data
used is NCA ID 020 data, with 70% training data and 30% used as test data.

From the experimental results, the error value is obtained as in the Table 3.

Table 3 Performance Using Three Different Feature Combinations

Feature Combinations KF1 KF2 KF3
RMSE 0.6782 0.6007 0.5568
MAE 0.3748 0.2999 0.2659

MAPE 0.0041 0.0032 0.0029
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Based on the estimator prediction results, the acceptable RMSE value is less than
5% RMSE [10].

From the first evaluation results of three different feature combinations, the use
of the KF3 combination gives the lowest RMSE value among the other
combinations. Furthermore, an evaluation process was carried out on the three
types of battery materials from the collected batteries database, NCA ID 027, LFP
ID 47, and LCO ID 4. The results of model evaluation using validation data are
shown in the table below.

Table 4 Model Performance in Validation Test

Validation NCA-027 LFP-47 LFP-47 LCO-4 LCO-4
Data Charging Charging Discharging Charging Disharging
RMSE 1.4320 7.8864 6.2003 3.5607 4.7642
MAE 0.9174 6.9229 5.8380 25214 4.3211
MAPE 0.0100 0.0761 0.0632 0.0266 0.0455

After the validation process performed with other battery data, it was found that
the model still has acceptable prediction results on the NCA-027 Charging data.
This NCA-027 validation data has the same charging and discharging method as
NCA-020, so the pattern of the ICA curve also has the same pattern. Therefore,
the validation results show that the model predicts well on the same material.

In the validation process on the LCO-4 data, the RMSE value was obtained below
the 5% target. Although it has a good RMSE, the SOH plot does not show a good
prediction, there are several battery cycles that have a large enough error between
the actual SOH value and the prediction as shown in Figure 10, especially in the
LCO-4 Discharging data. In these data, the prediction results tend to be the same
until the end of the cycle, so it can be said that the model is not able to see a
decrease in SOH over the cycle.

In validation with LFP-47 data which has RMSE results above 5%, 7.88% on
charging data, and 6.20% on discharging data, the estimator model is unable to
predict the charging data from LFP-47. This can be caused by the charging
method performed on the LFP-47 is a constant current consisting of 3 large
currents, which causes the ICA curve formed to be a mixture of several constant
currents so that the Incremental Capacity Analysis method is unable to capture
the curve pattern over the cycle. In the discharge data from LFP-47, the SOH
prediction shows a decrease at a cycle value of around 1700 and is able to
approach the actual SOH value. The discharging data of LFP-47 has the same
constant current method during the experiment cycle.
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Figure 10 SoH prediction compare to SoH actual of LCO ID 4 Charging

100 4 e M... 0 oo ooose [
%%000e ®000e
98 1 000005 soee,,
- ."t.. o %00, .....
< )
T 961 .‘.. o
@ % o,
'
%
e %
94 - o, .
(]
°
® test %0, %,
9 | @ Prediction .. .....
0 20 40 60 80 100

Number of cycle

Figure 11 SoH prediction compare to SoH actual of LCO ID 4 Discharging

5 Conclussions

From the experiments conducted, the use of features obtained from Incremental
Capacity Analysis can provide a small error in the SOH estimation application in
the same material with RMSE 1.4320% MAE 0.9174% and MAPE 0.0100%, in
this case, the NCA-027 battery material. However, in SOH prediction
applications in other types of material data, the model has difficulty estimating
SOH with error values that tend to be high, and prediction plot results that are not
able to approach the actual SOH value. This can be caused by the charging and
discharging methods applied or the machine learning method used. In further
research, researchers have conducted several experiments using different learning
methods. It was found that the XGBoost model was unable to make predictions
on data outside its training data range, which is NCA battery data. So a more
optimal supervised machine learning model is obtained using the Stacking
method which combines the capabilities of XGBoost with SVR.
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