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Abstract. Batteries are energy storage systems used in almost every aspect. As the 

battery will degrade over time as it is used, the Battery Management System 

(BMS) needs to be able to monitor its health so that the right battery replacement 

time can be predicted. Several State-of-Health (SoH) estimation methods have 

been studied, one of which is the data-driven method. This paper proposed SoH 

estimation for universal lithium-ion batteries using supervised machine learning: 

XGBoost that trained with only one battery material, which is Lihtium-Nickel-

Cobalt-Alumunium (NCA). From Model evaluation results show that the model is 

able to predict well on other data with the same material as the training data with 

RMSE 1.4320% MAE 0.9174% and MAPE 0.0100%. However, to make 

predictions on other types of material data, the model has difficulty because 

XGBoost is not able to make good predictions outside of the training data. 

Keywords: battery; battery management system; lithium-ion; state-of-health; supervised 

machine learning, xgboost. 

1 Introduction  

Batteries are energy storage media commonly used in daily life applications such 

as electronic devices, backup energy systems on the power grid, and electric 

vehicles. In addition to the support of electrical energy providers, the use of 

batteries in daily applications also requires a Battery Management System (BMS) 

as a management system to monitor and maximize the battery's performance. 

BMS will check battery parameters such as voltage, current, and internal 

temperature during the charging and draining process and estimate battery 

conditions such as actual capacity and battery health [1]. State of Health (SoH) 

indicates the level of battery degradation or available capacity compared to the 

battery capacity in new condition. The types of battery degradation namely Loss 

of Lithium Inventory (LLI) and Loss of Active Material (LAM) cause a decrease 

in capacity [2]  
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Estimation of SoH parameter values generally consists of three methods,  direct 

calculation methods, modeling-based methods, and data-driven methods [3]. The 

direct calculation method will measure the value of the open circuit voltage which 

will then be compared with the voltage and capacity curve. While the model-

based method compares the voltage, current, and temperature values with the 

modeling results that have been made. The data-driven method is analogous to a 

'black box' that performs SoH estimation [3]. 

The data-driven method uses Machine Learning to estimate SoH, so it requires a 

large database on the charge and discharge cycle of a battery. The large database 

is also because in actual conditions there are differences in operating conditions 

from each battery use, so the resulting degradation patterns vary [4]. With 

existing historical data, it is expected to be able to provide an accurate estimate 

of the degradation pattern of the State of Health of the battery. 

Based on the results of the literature study, it is found that there have been 

previous studies that use various machine learning models such as extreme 

learning, self-supervised, and deep neural networks. Each of them uses different 

features as parameters in the estimator. In SoH estimation research by Pan, Rui 

in 2023 using up to 15 Health Features (HFs), with the resulting RMSE value in 

the range of 1,168 to 2,290. Then research from Chen, Si-Zhe in 2023 [5] only 

used 4 Health Features with RMSE results in the range of 0.56 to 0.96. This shows 

that it is necessary to choose features that have a good correlation with KK and 

able to produce accurate values. 

In this study, the estimation of battery SoH was carried out using the Supervised 

Machine Learning method, where the Supervised method provides the speed of 

the learning process on a large database and already has a label on the work 

parameters that have been measured so that it can minimize the resources used. 

2 Material and Data Understanding 

This study used data derived from widely published battery research results. 

There are three types of battery materials from three different data sources. 

2.1 Lithium Nickel-Cobalt-Aluminum Oxide (NCA) 

This type of NCA battery was obtained from Jöst, Dominik et al in 2021 [6], 

manufactured by Samsung (INR18650-35E) with a nominal voltage of 3.6V and 

a nominal capacity of 3.4Ah. In this database contains 28 pcs high energy 

NCA/C+Si cycle aging test, and every battery performed the same profile test 

which is a series of cycling tests and checkup tests. In the cycling test the battery 

was charged with CCCV at 1.02 A current until 4.05V and 0.068 A cutoff. 
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For this study, the battery data used for the data training is a battery with ID 020, 

and ID 027 for the evaluation process. The discharge current varies in every cycle, 

as seen in Figure 1, maximum discharge current at 10A, and charging current 

around 2A. 

 

Figure 1 Battery current discharge from partial data of NCA ID 020 

 

Figure 2 Battery current discharge from partial data of NCA ID 027 

2.2 Lithium Cobalt Oxide (LCO) 

This LCO battery data from a fast charging test research by Gun, Define et al in 

2015 [7] from Berkeley University, with four cell ID were performed several 

CCCV cycles that gradually increased in C-rates to examine its behavior. Then, 

MCC, CP-CV, and Boostcharge cycles at various C-rates with an additional 1C 

CCCV baseline capacity test. The batteries were manufactured by Sanyo (18650) 

with a nominal capacity of 2.6 Ah and a nominal voltage of 3.7 V. 

In this paper, the LCO ID 4 is use as evaluation data. The battery discharge profile 

used a constant current 2.5A in every cycle as seen in Figure 2. 
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Figure 3 Battery current discharge data of LCO ID 4 

2.3 Lithium Iron Phosphate (LFP). 

This LFP battery that used in this paper was provided by Toyota Research 

Institute from Severson et al in 2019 [8], and consists of 124 commercial lithium-

ion batteries manufactured by A123 Systems (APR18650M1A) were cycled to 

failure under different fast-charging conditions. The cell have a nominal capacity 

of 1.1 Ah and a nominal voltage of 3.3 V. 

The LFP ID 47 use as evaluation data has discharged current profile as shown in 

Figure 3. The discharge current gradually increased with peak at 4A, and slowly 

decreased before it drained. 

 
Figure 4 Battery current discharge data of LFP 47 

3 Methodology 

The study runs in few step including data preparation, model training and 

evaluation process. 
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Figure 5 Reasearch Methodology 

3.1 Data Preparation 

Data preparation in this study consists of five steps. The first step is data 

conversion and compression. The collected raw data needs to be converted from 

its original file to be processed in the pandas Python library. The parquet 

extension was chosen because it can store data with a smaller memory, making it 

easier for the computing device to process data at low cost.  

The next step is feature creation. Raw data already has several features from data 

acquisition, including Voltage, Current, Time, and Temperature, which are then 

used to create new features. 

In this study, feature extraction based on Incremental Capacity Analysis (ICA) 

techniques was carried out to investigate the battery degradation mechanism [11]. 

This ICA technique is used by comparing changes in charge/discharge capacity 

with changes in voltage [12]. 

 

 

𝐼𝐶𝐴 =
𝑑𝑄

𝑑𝑉
=

∆𝑄

∆𝑉
=

(𝑄𝑖−𝑄𝑖−1)

(𝑉𝑖−𝑉𝑖−1)
       (1) 
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The ICA can be obtained from the constant current (CC) charging curve of the 

battery [13]. The results of the calculation of the ICA will form a curve in relation 

to the voltage during constant current charging. From the ICA curve can be 

obtained peak shape values and variations in the position of the peak which is 

closely related to the decrease in battery capacity [12]. In a study conducted by 

Wang, Guangfeng [14], it was shown that there is a high correlation between 

health features such as the position and size of the IC/DV peak and SOH [14].  

From the Incremental Capacity Analysis curve generation process as shown in 

Figure 6, several features can be obtained, the first is 'max_ica' as the ICA value 

of the peak of the curve, the secondly 'voltage_atmaxica' as the voltage value 

when the peak value is formed, and the last is 'peak_area' as the peak area under 

the curve with a voltage range of ±0.025V from 'voltage_atmaxica'. 

 
Figure 6 ICA Curve of NCA-020 Charging Data 

The SoH feature is calculated using the actual value of the battery capacity at a 

given cycle (𝐶𝑎𝑐𝑡) compared to the nominal capacity when the battery is in new 

condition (𝐶𝑛𝑒𝑤). 

𝑆𝑜𝐻 =
𝐶𝑎𝑐𝑡

𝐶𝑛𝑒𝑤
        (2) 

 

The third step is Feature Extraction, where existing feature data is selected to be 

used in the training data. In this research there are several features used based on 

ICA including ‘voltage_atmaxica’, ‘voltage_atmaxica’, and ‘peak_area’. And 

two features that has low correlation to SoH are dQ_mean as the mean of capacity 

differences and temp_mean as the mean of temperature during the charging or 

discharging. 

The fourth step is Data Cleaning, which is intended to remove noise in the data 

that can be caused by measurement errors or conditions that are not ideal during 

data acquisition. 

Using correlation function from sklearn, the correlation of health features can be 

obtained as shown in the table below. 
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Table 1 Features Correlation with SOH 

Feature Correlation 

max_ica  0.98 

voltage_atmaxica -0.88 

peak_area  0.98 

dQ_mean  0.69 

temp_mean -0.64 

 

From the 5 health features that have been determined, five feature combinations 

are made to be used as experimental variations in this study. Here are the feature 

combinations shown in the table below.  
Table 2 Feature Combinations 

Feature Combination 

Name  

Health Features 

KF1 max_ica; voltage_atmaxica; peak_area 

KF2 max_ica; voltage_atmaxica; peak_area; dQ_mean 

KF3 max_ica; voltage_atmaxica; peak_area; dQ_mean; temp_mean 

 

3.2 XGBoost Model Training 

To build State-of-Health estimator, this paper uses Supervised Machine Learning 

with XGBoost Regressor as its algorithm. XGBoost is claimed to run faster up to 

ten times than other popular algorithms [9]. This is considered because the 

amount of battery data obtained as training data is quite large, so it is expected to 

require low computational costs. In another study by Chen, Si-Zhe. 2023 [5], 

XGBoost is the algorithm that has the smallest error as an estimator compared to 

RF, SVR, and KRR.  

XGBoost uses hyperparameter to control the training process and the complexity 

of the resulting model. In this study use hyperparameter: objective, alpha, 

lambda, learning_rate, max_depth, and n_estimators. 

3.3 Evaluation Process 

In this Evaluation Step, the trained model estimate state-of-health with the 

Evaluation Data. The evaluastion metrics used in this research is RMSE, MAE 

and MAPE. 
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RMSE: Root Mean Squared Error 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑ √(𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1       (3) 

MAE: Mean Absolute Error 

𝑀𝐴𝐸 =  
1

𝑁
∑ |(𝑦𝑖 − 𝑦̂𝑖)|𝑁

𝑖=1       (4) 

MAPE: Mean Absolute Percentage Error 

𝑀𝐴𝑃𝐸 = 100 x  
1

𝑛
∑ |

(𝑦𝑖−𝑦̂𝑖)

𝑦𝑖
|  𝑛

𝑖=1      (5) 

There are three different data for the evaluation from each material, the NCA 

battery with ID 027, LFP ID 47, and LCO ID 4 which represent three different 

battery materials.  

4 Results and Discussion 

Each model of SoH estimator trained with discharging data is through the 

evaluation process with battery data that has different material types. 

In the initial stage, after the data is processed from data preparation stage, a 

hyperparameter search for XGBoost is carried out using the GridSearch function, 

where the computer automatically iterate using the XGBoost algorithm to 

determine the best hyperparameter that gives the minimum error. The computing 

device used in this research has a specification of 8 CPU Cores, and 16 Threads, 

with a base clock up to 4Ghz with 16GB RAM. The XGBoost computation used 

is CPU-based. 

These hyperparameters used in all models made, the results of the selected 

hyperparameters include: 'alpha': 0.01, 'lambda': 0.1, 'learning_rate': 0.3, 

'max_depth': 5, 'n_estimators': 200, 'objective': 'reg:squarederror'. After the 

hyperparameters have been determined, the estimator trained using training data 

on three different models with different feature combinations. The training data 

used is NCA ID 020 data, with 70% training data and 30% used as test data. 

From the experimental results, the error value is obtained as in the Table 3. 

Table 3 Performance Using Three Different Feature Combinations 

Feature Combinations KF1 KF2 KF3 

RMSE 0.6782 0.6007 0.5568 

MAE 0.3748 0.2999 0.2659 

MAPE 0.0041 0.0032 0.0029 
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Based on the estimator prediction results, the acceptable RMSE value is less than 

5% RMSE [10].  

From the first evaluation results of three different feature combinations, the use 

of the KF3 combination gives the lowest RMSE value among the other 

combinations. Furthermore, an evaluation process was carried out on the three 

types of battery materials from the collected batteries database, NCA ID 027, LFP 

ID 47, and LCO ID 4. The results of model evaluation using validation data are 

shown in the table below. 

 
Table 4 Model Performance in Validation Test 

Validation 

Data 

NCA-027 

Charging 

LFP-47 

Charging 

LFP-47 

Discharging 

LCO-4 

Charging 

LCO-4 

Disharging 

RMSE 1.4320 7.8864 6.2003 3.5607 4.7642 

MAE 0.9174 6.9229 5.8380 2.5214 4.3211 

MAPE 0.0100 0.0761 0.0632 0.0266 0.0455 

 

After the validation process performed with other battery data, it was found that 

the model still has acceptable prediction results on the NCA-027 Charging data.  

This NCA-027 validation data has the same charging and discharging method as 

NCA-020, so the pattern of the ICA curve also has the same pattern. Therefore, 

the validation results show that the model predicts well on the same material. 

In the validation process on the LCO-4 data, the RMSE value was obtained below 

the 5% target. Although it has a good RMSE, the SOH plot does not show a good 

prediction, there are several battery cycles that have a large enough error between 

the actual SOH value and the prediction as shown in Figure 10, especially in the 

LCO-4 Discharging data. In these data, the prediction results tend to be the same 

until the end of the cycle, so it can be said that the model is not able to see a 

decrease in SOH over the cycle. 

In validation with LFP-47 data which has RMSE results above 5%, 7.88% on 

charging data, and 6.20% on discharging data, the estimator model is unable to 

predict the charging data from LFP-47. This can be caused by the charging 

method performed on the LFP-47 is a constant current consisting of 3 large 

currents, which causes the ICA curve formed to be a mixture of several constant 

currents so that the Incremental Capacity Analysis method is unable to capture 

the curve pattern over the cycle. In the discharge data from LFP-47, the SOH 

prediction shows a decrease at a cycle value of around 1700 and is able to 

approach the actual SOH value. The discharging data of LFP-47 has the same 

constant current method during the experiment cycle. 
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Figure 7 SoH prediction compare to SoH actual of NCA ID 027 Charging 

 

Figure 8 SoH prediction compare to SoH actual of LFP ID 47 Charging 

 

 

Figure 9 SoH prediction compare to SoH actual of LFP ID 47 Discharging 
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Figure 10 SoH prediction compare to SoH actual of LCO ID 4 Charging 

 

 

Figure 11 SoH prediction compare to SoH actual of LCO ID 4 Discharging 

5 Conclussions 

From the experiments conducted, the use of features obtained from Incremental 

Capacity Analysis can provide a small error in the SOH estimation application in 

the same material with RMSE 1.4320% MAE 0.9174% and MAPE 0.0100%, in 

this case, the NCA-027 battery material. However, in SOH prediction 

applications in other types of material data, the model has difficulty estimating 

SOH with error values that tend to be high, and prediction plot results that are not 

able to approach the actual SOH value. This can be caused by the charging and 

discharging methods applied or the machine learning method used. In further 

research, researchers have conducted several experiments using different learning 

methods. It was found that the XGBoost model was unable to make predictions 

on data outside its training data range, which is NCA battery data. So a more 

optimal supervised machine learning model is obtained using the Stacking 

method which combines the capabilities of XGBoost with SVR. 
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