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Abstract. Point collocation method becomes popular in engineering design and
analysis in which offers a significant advantage by employing discretized strong
form, instead of being averaged over the domain as is the case in weak form
approach. Mollified basis functions offer several advantages such as ease of
constructing, flexible degree and smoothness, also adaptability to arbitrary
partitions, in which formed by convolving local polynomials within a cell with a
smooth kernel called mollifier. Since mollified basis functions have high order and
smoothness, it is possible for us to do local refinement like p-adaptivity, where the
polynomial order is chosen to be higher at certain region, one of the examples is
stress concentration in linear elasticity problem. The local p-adaptivity
implementation yields a higher convergence rate, resulting in computational
efficiency. Furthermore, the study of mollified collocation method using local p-
adaptivity is conducted by evaluating convergence error in linear elasticity plate
with hole problem.

Keywords: local p-adaptivity, mollified basis functions, point collocation method, linear
elasticity.

1 Introduction

Collocation methods are often more computationally efficient compared to Finite
Element Method (FEM) [1]. Point Collocation Method or also known as PCM
has been extensively explored and applied, one of the research is about the
concept of stabilized Lagrange interpolation within the PCM which providing
enhanced stability and accuracy [2]. The next is about weak form collocation
method, which extends method to handle weak formulations of Partial
Differential Equations [3]. The former researcher applied this method to linear
elasticity problems and incorporated adaptivity to improve efficiency and
accuracy [4].

Since the PCM connects discretization gquantity with continuous quantity, the
needs of basis functions become clear and the mollified basis functions offer
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several advantages. Mollified basis functions are inherently smooth and well-
suited for collocation-based approaches. Additionally, these basis functions are
also suitable for any refinements such as p-refinement which enables us to assign
different polynomial orders within domain cells, h-refinement which involves
increasing the number of cells (n.) and increase the total number of basis
functions (ng) [5]. Mollified basis functions are also capable of solving higher
order PDE such as biharmonic problem [6]. Because of that, it is possible for us
to do local refinement to any problem whose solutions have higher gradient in
the certain region, such as welding where a small area of the part is subjected to
very high temperatures [7], while the temperature in the rest of the parts remain
low, and stress concentration around hole in plate with hole problem [8].

As discussed in the former research, the number of basis functions depend on the
polynomial order [5]. Since the mollified basis functions have an ability to
arbitrary set polynomial order and it affects the number of basis function, we can
set different polynomial order in our simulation to decrease the computational
times. However, a significant challenge lies in the evaluation of mollified basis
functions, as it requires the intersection algorithms from computational geometry
to obtain the area for being convolution domain as mollification conducted.

In this paper, we will solve linear elasticity problem using mollified collocation
method with local p-adaptivity, the research is conducted to analyze the effect of
p-refinement on the convergence of L?-norm, and H!-semi-norm errors.
Moreover, we will also study the number of collocation points (1, ) especially
around hole in term of convergence errors.

2 Review of Mollified Basis Functions

2.1  Mollification of Piecewise Polynomials

Convolutional smoothing methods is widely developed in engineering practice
such as high-order convolution integral with the smooth kernel [9] and smooth
convolution-based distance functions which computes an implicit ¢ smooth
approximation on triangle meshes [10]. Another developments using convolution
integral is mollified basis functions [5].

The process of obtaining convolutional smoothing for a one-dimensional domain
Q € R? involves partitioning it into a collection of n, non-overlapping sections
called cells, denoted as {€;}. Each cell represents a distinct section of the domain,
such that
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The local polynomial order g? is represented by the vector p;(x), with a;; being
the corresponding polynomial coefficients, the result of mollification is shown in
Fig. 1. The summation of local polynomials defined across the entire domain
yields the following result

filx) = Zpi(x) | @ (3)

L
It is important to take note that the function will be discontinuous across the cell
boundaries, denoted as f(x) € C~1. To enhance the smoothness of f(x), the
convolution with mollifier m(x) will address the problem, where the mollifier
has the following set of properties

m(x)=0, Vx€eQ 4)
hm hm
supp m(x) = (—=, ) ©)
J m(x) dx =1 (6)
Q
m(z), f(). flz) //\ m(x), f(x), f(z) g \\
e / / )
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(A) (B
Figure 1 Mollification of piecewise discontinuous functions f(x) (black,
dashed) with a constant mollifier m(x) (red, solid). The resulting mollified
functions f(x) (blue, solid) are ¢° continuous (A). Linear mollifier can be
employed to obtain mollified functions with higher continuity ¢* (B) [5]

The process of mollifying f (x) involves defining it through convolution with the
mollifier
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FGO) = m()  f(x) = fn mx - YF) dy 7)

Additionally, polynomial mollifiers m(x) of degree g™ are determined, while
f(x) is of degree gP as previously mentioned. It is evident that the maximum
degree of the mollified function f(x) can be observed as ¢q™ + qP + 1. In the
case where the derivative of the mollifier m(x) exists, the derivative of mollified
function £ (x) can also be determined as

d . dm(x —y)
0= | T roay ®

2.2 Basis Functions Construction

The mollification method is utilized to derive the basis functions for both single
and multi-dimensional domains. The domain Q € R¢ is divided into a collection
of non-overlapping convex polytopes {Q;} referred to as cells which then, for
each cell, the mollification method generates a set of basis functions. Noting that,
the support required for the mollified basis functions are determined by taking
the Minkowski sum of the mollifier support with the corresponding cell [11].

2.2.1 Univariate Basis Function

Once the convolutional definition is derived, the process of deriving basis
functions in the univariate case lies the foundation for extending it to the
multivariate scenario. The basis functions specific to each cell, denoted as £;, can
be expressed using the mollification as follows

e = ) @l ©
Where the mollified basis functions vector N;(x) are defined by considering
Ni(x) = | m(x—y)p;(y) dy (10)
Q;

The selection of basis does not impact the approximation quality of the resulting
mollified basis, it does affect the interpretability of the coefficient e; and the
conditioning of the matrix [5]. Suppose that the monomial basis in each cell Q;

pi(x) = (1 xx?%.. x9") with x = 2x—c) (11)
Where qP represents the monomial degree, c; is center of cell, and h denotes the
average length of all cells {Q} in the domain. The scaling factor of % ensures that
all mollified basis functions have a similar maximum value.
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To evaluate the mollified basis function N;(x) at a given point x € Q within the
domain, we use convolution integral as shown in Eq. 13. In each case, the support
size of the mollified basis functions is h,, + h.;, where h,, denotes mollifier size
and h.; = x;41 — x; denotes the cell size.

(A) (B
Figure 2 Univariate mollified basis functions are examined in relation to bilinear
mollifier (g™ = 1) and a cubic local polynomial (g = 3) within cell domain
0; = (x;41,x;). The mollified basis functions shown in (B) are derived using
mollifier as depicted in (A)

2.2.2 Multivariate Basis Function

Similar to univariate case, the basis functions associated with a cell Q; are defined
as follows

Ni(x) = | m(x—y)p;(y) dy (12)
Q;
The vector p; (x) consists of the multivariate monomial basis functions of degree
q? which can be obtained by performing tensor product from univariate case,
such that

m(x) = m(x®) - m(x@) - m(x®) (13)

The mollifier can be constructed by C2-continuous hexic splines
35 1 12<x>2+48<x>4 64<x)6 if | |<h’”
16h,, ho, ho, h,) ) "SR

hm
0 if >—
if |x| = >

m(x) = (14)
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Where it has 6 boundary conditions such that m(—hTm)=m(h7m) =0,

d_m(_ h_m) - Z_’;‘(h_m) — 0 and &™ (_ h_m) _ &m (h—m) = 0 The continuity of

dx 2/ 2 dx? 2 _dxz 2/ o

the mollifier can be further enhanced by imposing additional zero derivatices at
h h . .

X = —7’" and x = 7’" However, both approaches increase computational cost

associated with convolution integrals evaluation.

(A) (B)

Figure 3 CZ-continuous hexic splines mollifier with the mollifier width h,, = 2
for (A) univariate and (B) multivariate case.

3 Collocation Method

In this section, we will outline the discretization procedure within the collocation
method for solving linear elasticity problems. This approach will then be applied
to a plate with circular hole problem, where stress concentration effects are
observed around the hole [7].
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3.1  Discretization on Elasticity Problems

{ ﬁ} Fis S ok @ 5 ik & F b § o

(A) (B)
Figure 4 2D problem domain subjected to the body force and boundary
conditions (A) and (B) cell visualization with h, = %
Based on Fig. 8, we know that the boundary I' = (I, U I;). The domain is
subjected to external tractions {t} = {t_x t_y]T applied on the Neumann boundary
I}, and prescibed displacements {u} = {@,W}T on the Dirichlet boundary T,,.

The vector {f?} = {f?, fyb}T represent the body force per unit volume. The
governing equations and two distinct bouondary conditions are expressed below

[Li{o} = {f"} in Q (15)
{u} = {u} on [, (16)
[n]"{o}={t} on T, 17)
Where [L] is a differential operators matrix as follows
0
>
]
L1={0 3 (18)
a 8
ay ox

The vector of Cauchy stress {a} in 2D is given as

{0} = {oxx, 9y, ny}T (19)
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Which means oy, and g, are normal stress and ay,, is shear stress. The vector
of {u} is the field variable represented as

) = {up ) (20)

And [N] is an outer normals matrix of a point residing on the boundary, which
expressed as

n, 0
[N]={0 my (21)
Ny Ny

The connection between stress and strain in this material is

{0} = [D]{€} (22)

For plane strain, the stiffness matrix [D] of material is given by

- E v 1-v 0
b1 = (1+v)(1-2v) 1-2v (23)

Hence, we obtain the governing equations and boundary conditions as follows

[LI"[DI(LHu}) = {f*} inQ (24)
{u} = {u} on [, (25)
[n]"[DI(LI{u}) = {8} onT; (26)

Considering that we deal with multi degrees of freedom, applying Lagrange
multipliers is a common technique used to enforce constraints on the system. [12]

3.2  Local P-Adaptivity

Local p-adaptivity or also known as local p-refinement is one of method in Finite
Element Analysis (FEA) that is applied by increasing the polynomial order in
certain regions where higher accuracy is required such as areas with steep
gradients, stress concentrations [8], high temperature [7]. Local p-adaptivity is
widely used because of its capability of increasing efficiency in computational
resources, higher accuracy with fewer elements and better handling of
singularities or stress concentrations [13].
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Figure 5 Local p-adaptivity implementation on plate with hole simulation using
mollified collocation method

4 Numerical Examples

4.1  One Dimensional Example
We consider the solution of the one-dimensional Poisson-Dirichlet problem

2
— L = f () (27)
On the domain Q = (0,1) € RL. The source term f(x) is chosen such that the
soultion is equal to u(x) = e~16*. As f(x) is a decay function which means it
has the higher gradient in the certain region relatives to the surroundings, we can
apply local p-adaptivity in the region with higher gradient. First, construct the
mollified basis functions, we define the non-overlapping cells {wi}?gl of size h;

where we define the piecewise polynomial basis functions p;(x). We then
consider the uniform cells h, € {%%%%} with n, € {7,12,22,42} and the
local polynomial 7;, € {1,2,3}, the mollifier width (h,,) is set to be twice of the
maximum cell size in one simulation.

We next distribute collocation points using Gauss quadrature points, which are
distributed by mapping the standard Gauss quadrature from the parametric
domain onto each cell [6]. For uniform refinement, we increase the number of
cell and minimize the cell size .

After conducting uniform refinement simulation, we then consider the region that
is having higher gradient, we choose that Q,¢fineq = [0,0.4]. The p-refinement
will consider the combination of quadratic-linear, cubic-linear, and cubic-
quadratic.
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(A) (B)

Figure 6 L?-norm error (Left) and H*-semi-norm error of 1D Poisson with decay
function as the solution

The Fig. 5 shows a comparison of relative L?-norm and H!-semi-norm as a
function of the average element size (h.). The convergence behavior is analyzed
for different refinement strategies, specifically local p-adaptivity and uniform
refinement, with the goal of having lower error and computational efficiency. It
shows that the higher of r,, will lead to lower error and faster convergence by
considering the convergence rate, it also can be seen with the local p-adaptivity
error curves. Furthermore, H-seminorm is smoother than L?-norm because of
the smoothness characteristic of mollification, considering that H*-seminorm is
sensitive to error in gradient.

4.2 Plate With Hole

The classic linear elasticity problem is an infinite plate with a circular hole
subjected to o = 10° MPa far-field traction in the x-direction.

e ——————— = 1
— =
- .
- -
-— —
~— —
%3 o =% ]'
= s E X
— — e
=1 — i e
) E w0
D S S —— N g b
(A) (B)

Figure 7 Infinite plate with hole with uniaxial loading case (A) and Model
simulation of linear elasticity of plate with hole (B) [8]
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The infinite plate with hole problem has been widely used for validation in the
past and has an analytical displacement solution [7] which can be expressed as

Uy = :—Z E (k + 1) cos(8) + 22 ((1 + k) cos(8) + cos(36)) — Zri;cos(BH)] (28)

Uy = :—Z E (k + 1) cos(8) + Zr—a((l + k) cos(8) + cos(36)) — Zri;cos(BH)] (29)
The material properties utilized include a Young’s modulus E of 70 Gpa and

Poisson’s ratio v of 0.3.

4.2.1 Displacement Visualization

I 1.7e-05 l 2.0e-09

8 g
165 g -2e-6 S
o [e]
y se6 Oy [ 406 o
3 T—. -3
L. x 27609 * 55606
(A) (B)

Figure 8 Visual comparison results of x displacement (A) and y displacement
(B) between analytical and Mollified Collocation Method of linear elasticity
problem in plate with hole

Since, the bottom and left of plate, the boundary conditions applied to the plate
is roller, so that it can counters the displacement comes from stress applied. The
plate will have larger displacement in y-direction at the bottom and larger
displacement at x-direction at location far from hole

4.2.2 Stress Visualization

As mentioned in Eq. 24 that we will have 2 kinds of stresses, there are normal
stress and shear stress. Normal stress is occurred at normal x and normal y
direction where shear stress is occurred at plane xy.
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Figure 9 Visual comparison of normal stress in x-direction (A), normal stress in
y-direction (B), and shear stress at xy-plane (C) of 2D Linear Elasticity plate with
hole problem.

As we can see from Fig. 9 that the normal stress around the circular hole is quite
larger than the area far from the hole. It means that there is stress concentration
around the circular hole. Also, from shear stress visualization we can see that the
top side of circular hole will have lower shear stress than surroundings area.

4.3 The Convergence Error

We will analyze the convergence error by computing L2-norm and H!-semi-
norm. We will analyze the effect of local p-adaptivity to the convergence error,
and the number of collocation points around the circular hole to the convergence
error.



Efficient Mollified Collocation Method with Local P-Adaptivity 13

4.3.1 The Effect of Local P-Adaptivity on Convergence Error

10!

10!

rror

S 10!
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Relative L*-norm

rror
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Relative L?-norm
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Average element size (h)

(A)

0 10-! 10°
Average element size (h)
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Figure 10 L%-norm (A) and H!-semi-norm (B) error for linear (blue, dot),
quadratic (black, dashed) and p-adaptivity strategy (red) on plate with hole

simulation

As we can see from Fig. 10, the higher local polynomial degree we use, we will
have higher convergence rate. Also, by applying the local p-adaptivity, we will

have lower error than the others.

4.3.2 The Effect of Boundary Collocation Points at Circular Hole

102

10

Relative L%-norm error

10!

>rm error

10!

Relative H'-n

107!
Average element size (h)

(A)

10" 10! 10"
Average element size (h)

(B)

Figure 11L%-norm (A) and H-semi-norm error (B) for nyenoe = 3 (black,
dashed) ni@noe = 15 (blue, dot), and nyen..e = 63 (red) on plate with hole

simulation

As shown in Fig. 11, the number of collocation points around the circular hole
(denoted as ng@noie) influences the convergence error. However, increasing the
number of collocation points does not necessarily lead to improved accuracy.
This is because the number of collocation points also affects the condition number
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of the Left-Hand Side (LHS) matrix, which can impact the stability of the
numerical solution. Moreover, due to the discrete nature of the cells, the circular
hole is not perfectly circular, introducing a stochastic error into the model.

5 Conclusion

The mollified basis functions can be effectively applied to the point collocation
method for solving linear elasticity problems. Additionally, we can employ local
p-adaptivity by increasing the local polynomial order in specific regions of the
cell domain, such as near the hole in this case. This approach demonstrates that
local p-adaptivity results in lower errors compared to using a uniform polynomial
order throughout the domain. Moreover, local p-adaptivity provides a higher
convergence rate, compared to solely using one order of local polynomial
approach. It also provides more efficiency because it needs lower total number of
basis functions than the uniform refinement.

Furthermore, the placement of boundary collocation points significantly
influences the convergence error. Since these points are distributed across the
cells and the circular hole is not perfectly circular due to cell shapes, the
evaluation of the mollified basis functions becomes crucial. By evaluating the
basis functions consistently at each point, the method ensures stability. However,
the irregularity in the shape of circular hole introduces stochastic effects, which
must be accounted for in the next research related to this topic.

Acknowledgement

This work is as collaboration between the Flow Science and Engineering Lab in
Faculty of Mechanical and Aerospace Engineering with University of Glasgow.

References

[1] D. Schilinger, J. A. Evans, F. Frischmann, R. R. Hiemstra, M.-C. Hsu, and
T. J. Hughes, “A collocated cO finite element method: Reduced quadrature
perspective, cost comparison with standard finite elements, and explicit
structural dynamics,” International Journal for Numerical Methods in
Engineering, vol. 102, no. 3-4, pp. 576-631, 2015.

[2] L.Wang, M. Hu, Z. Zhong, and F. Yang, “Stabilized lagrange interpolation
collocation method: A meshfree method incorporating the advantages of
finite element method,” Computer Methods in Applied Mechanics and
Engineering, vol. 404, p. 115780, 2023.

[3] T. Oliveira and A. Portela, “Weak-form collocation — a local meshless
method in linear elasticity,” Engineering Analysis with Boundary
Elements, vol. 73, pp. 144-160, 2016.



Efficient Mollified Collocation Method with Local P-Adaptivity 15

[4]

5]
(6]

[7]

(8]
(9]

[10]

[11]

[12]

[13]

L. Fan, W. M. Coombs, and C. E. Augarde, “The point collocation method
with a local maximum entropy approach,” Computers & Structures, vol.
201, pp. 1-14, 2018.

E. V. Febrianto, Mollified piecewise polynomial approximants of arbitrary
order and smoothness. PhD thesis, University of Cambridge, 2019.

D. Alfarisy, L. Zuhal, M. Ortiz, F. Cirak, and E. Febrianto, “Point
collocation with mollified piecewise polynomial approximants for high-
order partial differential equations,” International Journal for Numerical
Methods in  Engineering, Jun. 2024. [Online]. Available:
http://dx.doi.org/10.1002/nme.7548

D. Alves do Carmo and A. Rocha de Faria, “A 2d finite element with
through the thickness parabolic temperature distribution for heat transfer
simulations including welding,” Finite Elements in Analysis and Design,
vol. 93, pp. 85-95, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168874X14001851
S. Timoshenko and J. N. Goodier, Theory of Elasticity. New York:
McGraw-Hill, 1970.

J. Qiang, “A high-order fast method for computing convolution integral
with smooth kernel,” Computer Physics Communications, vol. 181, no. 2,
pp. 313-316, 2010.

A. Schmeiler, R. Wegener, D. Hietel, and H. Hagen, “Smooth
convolution-based distance functions,” Graphical Models, vol. 82, pp. 67—
76, 2015.

F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental
geometric data structure,” ACM Computing Surveys, vol. 23, pp. 345-
405, 1991.

C. Felippa, Introduction to Finite Element Methods. Department of
Aerospace Engineering Sciences and Center for Aerospace Structures
University of Colorado, 2003.

Demkowicz, L. (2006). Computing with hp-ADAPTIVE FINITE
ELEMENTS: Volume 1 One and Two Dimensional Elliptic and Maxwell
Problems (1st ed.). Chapman and Hall/CRC.
https://doi.org/10.1201/9781420011685



http://dx.doi.org/10.1002/nme.7548
https://www.sciencedirect.com/science/article/pii/S0168874X14001851
https://doi.org/10.1201/9781420011685

