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Abstract. Point collocation method becomes popular in engineering design and 

analysis in which offers a significant advantage by employing discretized strong 

form, instead of being averaged over the domain as is the case in weak form 

approach. Mollified basis functions offer several advantages such as ease of 

constructing, flexible degree and smoothness, also adaptability to arbitrary 

partitions, in which formed by convolving local polynomials within a cell with a 

smooth kernel called mollifier. Since mollified basis functions have high order and 

smoothness, it is possible for us to do local refinement like p-adaptivity, where the 

polynomial order is chosen to be higher at certain region, one of the examples is 

stress concentration in linear elasticity problem. The local p-adaptivity 

implementation yields a higher convergence rate, resulting in computational 

efficiency. Furthermore, the study of mollified collocation method using local p-

adaptivity is conducted by evaluating convergence error in linear elasticity plate 

with hole problem. 

Keywords: local p-adaptivity, mollified basis functions, point collocation method, linear 

elasticity. 

1 Introduction 

Collocation methods are often more computationally efficient compared to Finite 

Element Method (FEM) [1]. Point Collocation Method or also known as PCM 

has been extensively explored and applied, one of the research is about the 

concept of stabilized Lagrange interpolation within the PCM which providing 

enhanced stability and accuracy [2]. The next is about weak form collocation 

method, which extends method to handle weak formulations of Partial 

Differential Equations [3]. The former researcher applied this method to linear 

elasticity problems and incorporated adaptivity to improve efficiency and 

accuracy [4]. 

Since the PCM connects discretization quantity with continuous quantity, the 

needs of basis functions become clear and the mollified basis functions offer 
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several advantages. Mollified basis functions are inherently smooth and well-

suited for collocation-based approaches. Additionally, these basis functions are 

also suitable for any refinements such as p-refinement which enables us to assign 

different polynomial orders within domain cells, h-refinement which involves 

increasing the number of cells (𝑛𝑐)  and increase the total number of basis 

functions (𝑛𝐵) [5]. Mollified basis functions are also capable of solving higher 

order PDE such as biharmonic problem [6]. Because of that, it is possible for us 

to do local refinement to any problem whose solutions have higher gradient in 

the certain region, such as welding where a small area of the part is subjected to 

very high temperatures [7], while the temperature in the rest of the parts remain 

low, and stress concentration around hole in plate with hole problem [8]. 

As discussed in the former research, the number of basis functions depend on the 

polynomial order [5]. Since the mollified basis functions have an ability to 

arbitrary set polynomial order and it affects the number of basis function, we can 

set different polynomial order in our simulation to decrease the computational 

times. However, a significant challenge lies in the evaluation of mollified basis 

functions, as it requires the intersection algorithms from computational geometry 

to obtain the area for being convolution domain as mollification conducted.  

In this paper, we will solve linear elasticity problem using mollified collocation 

method with local p-adaptivity, the research is conducted to analyze the effect of 

p-refinement on the convergence of 𝐿2-norm, and 𝐻1-semi-norm errors. 

Moreover, we will also study the number of collocation points (𝑛𝑘) especially 

around hole in term of convergence errors.  

2 Review of Mollified Basis Functions 

2.1 Mollification of Piecewise Polynomials 

Convolutional smoothing methods is widely developed in engineering practice 

such as high-order convolution integral with the smooth kernel [9] and smooth 

convolution-based distance functions which computes an implicit 𝒞2 smooth 

approximation on triangle meshes [10]. Another developments using convolution 

integral is mollified basis functions [5]. 

The process of obtaining convolutional smoothing for a one-dimensional domain 

Ω ∈ ℛ1 involves partitioning it into a collection of 𝑛𝑐 non-overlapping sections 

called cells, denoted as {Ω𝑖}. Each cell represents a distinct section of the domain, 

such that 
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Ω =⋃Ω𝑖

𝑛𝑐

𝑖=1

 (1) 

On each cell, Ω𝑖 a local polynomial is defined, 

𝑓𝑖(𝑥) = {
𝒑𝑖(𝑥) ⋅ 𝜶𝑖       if  𝑥 ∈ Ω𝑖
0                       if  𝑥 ∉ Ω𝑖

 
(2) 

The local polynomial order 𝑞𝑝 is represented by the vector 𝒑𝑖(𝑥), with 𝛼𝑖𝑖 being 

the corresponding polynomial coefficients, the result of mollification is shown in 

Fig. 1. The summation of local polynomials defined across the entire domain Ω 

yields the following result 

𝑓𝑖(𝑥) =∑𝒑𝑖(𝑥) ⋅ 𝛼𝑖
𝑖

 (3) 

It is important to take note that the function will be discontinuous across the cell 

boundaries, denoted as 𝑓(𝑥) ∈ 𝒞−1. To enhance the smoothness of 𝑓(𝑥), the 

convolution with mollifier 𝑚(𝑥) will address the problem, where the mollifier 

has the following set of properties 

𝑚(𝑥) ≥ 0 , ∀𝑥 ∈ Ω (4) 

supp 𝑚(𝑥) = (−
ℎ𝑚
2
,
ℎ𝑚
2
) (5) 

∫𝑚(𝑥)  𝑑𝑥 = 1
Ω

 (6) 

  

(A) (B) 

Figure 1 Mollification of piecewise discontinuous functions 𝑓(𝑥) (black, 

dashed) with a constant mollifier 𝑚(𝑥) (red, solid). The resulting mollified 

functions 𝑓(𝑥) (blue, solid) are 𝒞0 continuous (A). Linear mollifier can be 

employed to obtain mollified functions with higher continuity 𝒞1 (B) [5] 

The process of mollifying 𝑓(𝑥) involves defining it through convolution with the 

mollifier  
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𝑓(𝑥) = 𝑚(𝑥) ∗ 𝑓(𝑥) = ∫𝑚(𝑥 − 𝑦)𝑓(𝑦) 𝑑𝑦
Ω

 (7) 

Additionally, polynomial mollifiers 𝑚(𝑥) of degree 𝑞𝑚 are determined, while 

𝑓(𝑥) is of degree 𝑞𝑝 as previously mentioned. It is evident that the maximum 

degree of the mollified function 𝑓(𝑥) can be observed as 𝑞𝑚 + 𝑞𝑝 + 1. In the 

case where the derivative of the mollifier 𝑚(𝑥) exists, the derivative of mollified 

function 𝑓(𝑥) can also be determined as 

𝑑

𝑑𝑥
𝑓(𝑥) = ∫

𝑑𝑚(𝑥 − 𝑦)

𝑑𝑥
 𝑓(𝑦) 𝑑𝑦

Ω

 (8) 

2.2 Basis Functions Construction 

The mollification method is utilized to derive the basis functions for both single 

and multi-dimensional domains. The domain Ω ∈ ℛ𝑑 is divided into a collection 

of non-overlapping convex polytopes {Ω𝑖} referred to as cells which then, for 

each cell, the mollification method generates a set of basis functions. Noting that, 

the support required for the mollified basis functions are determined by taking 

the Minkowski sum of the mollifier support with the corresponding cell [11]. 

2.2.1 Univariate Basis Function 

Once the convolutional definition is derived, the process of deriving basis 

functions in the univariate case lies the foundation for extending it to the 

multivariate scenario. The basis functions specific to each cell, denoted as Ω𝑖, can 

be expressed using the mollification as follows 

𝑓𝑚(𝑥) =∑𝜶𝑖𝑵𝑖(𝑥)

𝑖

 (9) 

Where the mollified basis functions vector 𝑵𝑖(𝑥) are defined by considering 

𝑵𝑖(𝑥) = ∫ 𝑚(𝑥 − 𝑦)𝒑𝑖(𝑦)  𝑑𝑦
Ω𝑖

 (10) 

The selection of basis does not impact the approximation quality of the resulting 

mollified basis, it does affect the interpretability of the coefficient 𝜶𝑖 and the 

conditioning of the matrix [5]. Suppose that the monomial basis in each cell Ω𝑖 

𝒑𝑖(𝑥) = (1  𝑥 𝑥
2… 𝑥𝑞

𝑝
)  with   𝑥 =

2(𝑥 − 𝑐𝑖)

ℎ
 (11) 

Where 𝑞𝑝 represents the monomial degree, 𝑐𝑖 is center of cell, and ℎ denotes the 

average length of all cells {Ω} in the domain. The scaling factor of 
2

ℎ
 ensures that 

all mollified basis functions have a similar maximum value. 
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To evaluate the mollified basis function 𝑵𝑖(𝑥) at a given point 𝑥 ∈ Ω within the 

domain, we use convolution integral as shown in Eq. 13. In each case, the support 

size of the mollified basis functions is ℎ𝑚 + ℎ𝑐,𝑖, where ℎ𝑚 denotes mollifier size 

and ℎ𝑐,𝑖 = 𝑥𝑖+1 − 𝑥𝑖 denotes the cell size.  

  

(A) (B) 

Figure 2 Univariate mollified basis functions are examined in relation to bilinear 

mollifier (𝑞𝑚 = 1) and a cubic local polynomial (𝑞𝑝 = 3) within cell domain 

𝛺𝑖 = (𝑥𝑖+1, 𝑥𝑖). The mollified basis functions shown in (B) are derived using 

mollifier as depicted in (A) 

2.2.2 Multivariate Basis Function 

Similar to univariate case, the basis functions associated with a cell Ω𝑖 are defined 

as follows 

𝑵𝑖(𝒙) = ∫ 𝑚(𝒙 − 𝒚)𝒑𝑖(𝒚)  𝑑𝑦
Ω𝑖

 (12) 

The vector 𝒑𝑖(𝑥) consists of the multivariate monomial basis functions of degree 

𝑞𝑝 which can be obtained by performing tensor product from univariate case, 

such that 

𝑚(𝒙) = 𝑚(𝑥(1)) ⋅ 𝑚(𝑥(2)) ⋅ 𝑚(𝑥(3)) 
 

(13) 

The mollifier can be constructed by 𝒞2-continuous hexic splines 

𝑚(𝑥) =

{
 

 
35

16ℎ𝑚
(1 − 12 (

𝑥

ℎ𝑚
)
2

+ 48 (
𝑥

ℎ𝑚
)
4

− 64 (
𝑥

ℎ𝑚
)
6

)   if  |𝑥| <
ℎ𝑚
2

0                                                                                           if  |𝑥| ≥
ℎ𝑚
2

 (14) 



6 Syahrir Ginanjar, et al. 

 

Where it has 6 boundary conditions such that 𝑚(−
ℎ𝑚

2
) = 𝑚(

ℎ𝑚

2
) = 0, 

𝑑𝑚

𝑑𝑥
(−

ℎ𝑚

2
) =

𝑑𝑚

𝑑𝑥
(
ℎ𝑚

2
) = 0 and 

𝑑2𝑚

𝑑𝑥2
(−

ℎ𝑚

2
) =

𝑑2𝑚

𝑑𝑥2
(
ℎ𝑚

2
) = 0 The continuity of 

the mollifier can be further enhanced by imposing additional zero derivatices at 

𝑥 = −
ℎ𝑚

2
 and 𝑥 =

ℎ𝑚

2
. However, both approaches increase computational cost 

associated with convolution integrals evaluation. 

 
 

(A) (B) 

Figure 3 𝒞2-continuous hexic splines mollifier with the mollifier width ℎ𝑚 = 2 

for (A) univariate and (B) multivariate case. 

3 Collocation Method 

In this section, we will outline the discretization procedure within the collocation 

method for solving linear elasticity problems. This approach will then be applied 

to a plate with circular hole problem, where stress concentration effects are 

observed around the hole [7]. 
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3.1 Discretization on Elasticity Problems 

 

 

(A) (B) 

Figure 4 2D problem domain subjected to the body force and boundary 

conditions (A) and (B) cell visualization with ℎ𝑐 =
1

4
 

Based on Fig. 8, we know that the boundary Γ = (Γ𝑢 ∪ Γ𝑡). The domain is 

subjected to external tractions {𝑡} = {𝑡𝑥̅, 𝑡𝑦̅}
𝑇

 applied on the Neumann boundary 

Γ𝑡, and prescibed displacements {𝑢̅} = {𝑢𝑥̅̅ ̅, 𝑢𝑦̅̅ ̅}
𝑇

 on the Dirichlet boundary Γ𝑢. 

The vector {𝑓𝑏} = {𝑓𝑥
𝑏, 𝑓𝑦

𝑏}
𝑇

 represent the body force per unit volume. The 

governing equations and two distinct bouondary conditions are expressed below 

 [𝐿]{𝜎} = {𝑓𝑏}   in  Ω (15) 

 {𝑢} = {𝑢̅}           on   Γ𝑢 (16) 

 [𝑛]𝑇{𝜎} = {𝑡̅}   on   Γ𝑡 (17) 

Where [𝐿] is a differential operators matrix as follows 

 [𝐿] =

[
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 

 (18) 

The vector of Cauchy stress {𝜎} in 2D is given as 

 {𝜎} = {𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦}
𝑇

 (19) 
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Which means 𝜎𝑥𝑥 and 𝜎𝑦𝑦 are normal stress and 𝜎𝑥𝑦 is shear stress. The vector 

of {𝑢} is the field variable represented as 

 {𝑢} = {𝑢𝑥, 𝑢𝑦}
𝑇

 (20) 

And [𝑁] is an outer normals matrix of a point residing on the boundary, which 

expressed as  

 [𝑁] = [

𝑛𝑥 0
0 𝑛𝑦
𝑛𝑦 𝑛𝑥

] (21) 

The connection between stress and strain in this material is 

 {𝜎} = [𝐷]{𝜖} (22) 

For plane strain, the stiffness matrix [𝐷] of material is given by 

 [𝐷] =
𝐸

(1+𝜈)(1−2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1−2𝜈

2

] (23) 

Hence, we obtain the governing equations and boundary conditions as follows 

 [𝐿]𝑇[𝐷]([𝐿]{𝑢}) = {𝑓𝑏}     in  Ω (24) 

 {𝑢} = {𝑢̅}                               on  Γ𝑢 (25) 

 [𝑛]𝑇[𝐷]([𝐿]{𝑢}) = {𝑡̅}        on  Γ𝑡 (26) 

Considering that we deal with multi degrees of freedom, applying Lagrange 

multipliers is a common technique used to enforce constraints on the system. [12] 

3.2 Local P-Adaptivity 

Local p-adaptivity or also known as local p-refinement is one of method in Finite 

Element Analysis (FEA) that is applied by increasing the polynomial order in 

certain regions where higher accuracy is required such as areas with steep 

gradients, stress concentrations [8], high temperature [7]. Local p-adaptivity is 

widely used because of its capability of increasing efficiency in computational 

resources, higher accuracy with fewer elements and better handling of 

singularities or stress concentrations [13]. 
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Figure 5 Local p-adaptivity implementation on plate with hole simulation using 

mollified collocation method 

4 Numerical Examples 

4.1 One Dimensional Example 

We consider the solution of the one-dimensional Poisson-Dirichlet problem 

 −
𝑑2𝑢(𝑥)

𝑑𝑥2
= 𝑓(𝑥) (27) 

On the domain Ω = (0,1) ∈ ℛ1. The source term 𝑓(𝑥) is chosen such that the 

soultion is equal to 𝑢(𝑥) = 𝑒−16𝑥. As 𝑓(𝑥) is a decay function which means it 

has the higher gradient in the certain region relatives to the surroundings, we can 

apply local p-adaptivity in the region with higher gradient. First, construct the 

mollified basis functions, we define the non-overlapping cells {𝜔𝑖}𝑖=1
𝑛𝑐  of size ℎ𝑐,𝑖 

where we define the piecewise polynomial basis functions 𝒑𝑖(𝑥). We then 

consider the uniform cells ℎ𝑐 ∈ {
1

5
,
1

10
,
1

20
,
1

40
} with 𝑛𝑐 ∈ {7,12,22,42} and the 

local polynomial 𝑟𝑝 ∈ {1,2,3}, the mollifier width (ℎ𝑚) is set to be twice of the 

maximum cell size in one simulation.  

We next distribute collocation points using Gauss quadrature points, which are 

distributed by mapping the standard Gauss quadrature from the parametric 

domain onto each cell [6]. For uniform refinement, we increase the number of 

cell and minimize the cell size . 

After conducting uniform refinement simulation, we then consider the region that 

is having higher gradient, we choose that Ω𝑟𝑒𝑓𝑖𝑛𝑒𝑑 = [0,0.4]. The p-refinement 

will consider the combination of quadratic-linear, cubic-linear, and cubic-

quadratic. 
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(A) (B) 

Figure 6 𝐿2-norm error (Left) and 𝐻1-semi-norm error of 1D Poisson with decay 

function as the solution 

The Fig. 5 shows a comparison of relative 𝐿2-norm and 𝐻1-semi-norm as a 

function of the average element size (ℎ𝑐). The convergence behavior is analyzed 

for different refinement strategies, specifically local p-adaptivity and uniform 

refinement, with the goal of having lower error and computational efficiency. It 

shows that the higher of 𝑟𝑝 will lead to lower error and faster convergence by 

considering the convergence rate, it also can be seen with the local p-adaptivity 

error curves. Furthermore, 𝐻1-seminorm is smoother than 𝐿2-norm because of 

the smoothness characteristic of mollification, considering that 𝐻1-seminorm is 

sensitive to error in gradient. 

4.2 Plate With Hole 

The classic linear elasticity problem is an infinite plate with a circular hole 

subjected to 𝜎 = 106 𝑀𝑃𝑎 far-field traction in the 𝑥-direction.  

  

(A) (B) 

Figure 7 Infinite plate with hole with uniaxial loading case (A) and Model 

simulation of linear elasticity of plate with hole (B) [8] 
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The infinite plate with hole problem has been widely used for validation in the 

past and has an analytical displacement solution [7] which can be expressed as 

𝑢𝑥 =
𝐹𝑎

8𝜇
[
𝑟

𝑎
(𝜅 + 1) cos(𝜃) +

2𝑎

𝑟
((1 + 𝜅) cos(𝜃) + cos(3𝜃)) −

2𝑎3

𝑟3
cos(3𝜃)]  (28) 

𝑢𝑥 =
𝐹𝑎

8𝜇
[
𝑟

𝑎
(𝜅 + 1) cos(𝜃) +

2𝑎

𝑟
((1 + 𝜅) cos(𝜃) + cos(3𝜃)) −

2𝑎3

𝑟3
cos(3𝜃)] (29) 

 

The material properties utilized include a Young’s modulus 𝐸 of 70 Gpa and 

Poisson’s ratio 𝜈 of 0.3. 

4.2.1 Displacement Visualization 

  
(A) (B) 

Figure 8 Visual comparison results of 𝑥 displacement (A) and 𝑦 displacement 

(B) between analytical and Mollified Collocation Method of linear elasticity 

problem in plate with hole 

Since, the bottom and left of plate, the boundary conditions applied to the plate 

is roller, so that it can counters the displacement comes from stress applied. The 

plate will have larger displacement in 𝑦-direction at the bottom and larger 

displacement at 𝑥-direction at location far from hole 

4.2.2 Stress Visualization 

As mentioned in Eq. 24 that we will have 2 kinds of stresses, there are normal 

stress and shear stress. Normal stress is occurred at normal 𝑥 and normal 𝑦 

direction where shear stress is occurred at plane 𝑥𝑦. 
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(A) (B) 

 
(C) 

Figure 9 Visual comparison of normal stress in 𝑥-direction (A), normal stress in 

𝑦-direction (B), and shear stress at 𝑥𝑦-plane (C) of 2D Linear Elasticity plate with 

hole problem. 

As we can see from Fig. 9 that the normal stress around the circular hole is quite 

larger than the area far from the hole. It means that there is stress concentration 

around the circular hole. Also, from shear stress visualization we can see that the 

top side of circular hole will have lower shear stress than surroundings area. 

4.3 The Convergence Error  

We will analyze the convergence error by computing 𝐿2-norm and 𝐻1-semi-

norm. We will analyze the effect of local p-adaptivity to the convergence error, 

and the number of collocation points around the circular hole to the convergence 

error. 
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4.3.1 The Effect of Local P-Adaptivity on Convergence Error 

  

(A) (B) 

Figure 10 𝐿2-norm (A) and 𝐻1-semi-norm (B) error for linear (blue, dot), 

quadratic (black, dashed) and p-adaptivity strategy (red) on plate with hole 

simulation 

 As we can see from Fig. 10, the higher local polynomial degree we use, we will 

have higher convergence rate. Also, by applying the local p-adaptivity, we will 

have lower error than the others. 

4.3.2 The Effect of Boundary Collocation Points at Circular Hole 

  

(A) (B) 

Figure 11 𝐿2-norm (A) and 𝐻1-semi-norm error (B) for 𝑛𝑘@ℎ𝑜𝑙𝑒 = 3 (black, 

dashed)  𝑛𝑘@ℎ𝑜𝑙𝑒 = 15 (blue, dot), and 𝑛𝑘@ℎ𝑜𝑙𝑒 = 63 (red) on plate with hole 

simulation 

As shown in Fig. 11, the number of collocation points around the circular hole 

(denoted as 𝑛𝑘@ℎ𝑜𝑙𝑒) influences the convergence error. However, increasing the 

number of collocation points does not necessarily lead to improved accuracy. 

This is because the number of collocation points also affects the condition number 
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of the Left-Hand Side (LHS) matrix, which can impact the stability of the 

numerical solution. Moreover, due to the discrete nature of the cells, the circular 

hole is not perfectly circular, introducing a stochastic error into the model. 

5 Conclusion 

The mollified basis functions can be effectively applied to the point collocation 

method for solving linear elasticity problems. Additionally, we can employ local 

p-adaptivity by increasing the local polynomial order in specific regions of the 

cell domain, such as near the hole in this case. This approach demonstrates that 

local p-adaptivity results in lower errors compared to using a uniform polynomial 

order throughout the domain. Moreover, local p-adaptivity provides a higher 

convergence rate, compared to solely using one order of local polynomial 

approach. It also provides more efficiency because it needs lower total number of 

basis functions than the uniform refinement. 

Furthermore, the placement of boundary collocation points significantly 

influences the convergence error. Since these points are distributed across the 

cells and the circular hole is not perfectly circular due to cell shapes, the 

evaluation of the mollified basis functions becomes crucial. By evaluating the 

basis functions consistently at each point, the method ensures stability. However, 

the irregularity in the shape of circular hole introduces stochastic effects, which 

must be accounted for in the next research related to this topic. 
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