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Abstract.  In this paper, the so-called Stefan problem for wave equation is studied. 

A smooth obstacle placed at one end of a vibrating string causes the effective 

length of the vibrating string to be changing over time. A straightforward 

perturbation expansion is used to solve the problem analytically. Some remarks 

regarding studies of a similar problem by others in the literature are given. 

Furthermore, we implement numerical method to solve the problem and analyzes 

the result comprehensively. 
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1 Introduction 

Vibrations of a one-dimensional string has been an object of studies since the 19th 

century.  There are many interesting applications of this problem, in particular 

vibration of string in musical instruments.   Various mathematical models and 

analysis have been developed to understand, modify, and adapt the resulting 

sound of corresponding instruments. Even though string vibration can be easily 

modelled by a boundary value problem of wave equation type, a more realistic 

model requires some more complex settings. One of it is the presence of a smooth 

bridge on one end of the string which leads to a time-dependent domain, since 

one of the boundaries is moving. This type of problem is known as the Stefan 

problem, and it requires different mathematical techniques to construct solutions. 

The analysis of the vibration of a string with moving boundary has been done 

since decades ago.  One of the first analysis is done by Balazs [1] which studied 

wave equation with constantly expanding domain. In the recent development, 

many studies focused on musical instrument, in which an obstacle or barrier 

exists which disturb the vibration. Various approaches has been done in studying 

the vibration, such as modal approach [2], using d’Alembert formula [3], using 

general integral transform [4]. etc.  These vibrations can also be studied from the 

perspective of the collision between the string and the barrier, as is done by Bilbao 

using finite difference as a numerical scheme [5] and also by Issanchou et al using 

non-smooth contact dynamics [6].  

Many of previously mentioned studies modelled the obstacle in the middle of the 

domain, so that problem domain remains fixed. If the obstacle is set at one of the 
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boundaries, then the attachment position itself is varying as the string touches the 

obstacle. This leads to a Stefan problem. Vyasarayani et al derived and modelled 

this problem comprehensively in the case of Sitar instrument [7]. The frequencies 

and modes of the vibration of the same model is then studied by Mandal and Wahi 

using linearization and boundary immobilization technique [8]. They studied 

further the mode-locking phenomena that occurred in the problem using method 

of multiple scales [9]. The problem can be extended to accommodate vibration in 

extra dimension as doubly curved obstacle is considered. In this case of problem, 

planar and non-planar motions can be studied using Galerkin projections [10], 

[11]. 

In this study, we consider the same model as is derived Vyasaravani et al [7] using 

somewhat different approaches. We apply immobilization method as is done by 

Mandal and Wahi but we use different scaling and steps. We show that the 

transformed nonlinear problem can be written as a family of simple homogeneous 

linear problem using the perturbation expansion. We also applied numerical 

computation to the small order part problem without Galerkin projections.  

2 Problem Formulation 

Consider a thin string with length 𝐿, tension 𝑇, and length-density 𝜌.  The string 

is fixed at one end: 𝑋 = 𝐿.  At the left boundary, a small bridge with parabolic-

shaped which defined by 𝑌𝐵(𝑋) = 𝐴𝑝𝑋(𝐵 − 𝑋) for some given value of 𝐴𝑝 > 0 

and 𝐵 ∈ (0, 𝐿), is placed. This bridge is touched by the string as the string 

displaces, shifting the attachment point over time. This gives rise to a moving 

boundary problem.   The displacement of the string vibrates over time, and it is 

governed by following system. 

 𝑇𝑌𝑋𝑋 − 𝜌𝑌𝜃𝜃 = 0,      Γ (𝜃) ≤ 𝑋 ≤ 𝐿 (1) 

 𝑌(Γ, 𝜃) = 𝑌𝐵(Γ) = 𝐴𝑝Γ(𝐵 − Γ) (2) 

 𝑌(𝐿, 𝜃) = 𝐻𝑟 (3) 

 𝑌𝑋(𝐿, 𝜃) =
𝑑𝑌𝐵

𝑑𝑋
(Γ) = 𝐴𝑝(𝐵 − 2Γ) (4) 

We apply scaling transformation to obtain dimensionless system by the following 

transformations  

  𝑥̅ =
𝑋

𝐿
,   𝑦̅(𝑥̅, 𝜏̅) =

𝑌(𝑋,𝜃)

𝐴𝑝𝐿2 , 𝜏̅ = 𝜃√
𝑇

𝜌𝐿2 ,   𝛾̅ =
Γ

𝐿
,   𝑏 =

𝐵

𝐿
, ℎ =

𝐻𝑟

𝐴𝑝𝐿2 (5) 

We use a different scaling transformation in contrast with the those in [7] and [8].  

The resulting system then depends only on two parameters, i.e., 𝑏 and ℎ. Keeping 

the parameter 𝐴𝑝 as a controlled parameter might give a misleading 
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reconstruction of real phenomenon. This is clear from the previous studies where 

predefined and scaled 𝐴𝑝 when implementing the simulation produce a high gap 

difference between the peak left obstacle and the right attachment.  This is not 

realistic in any string musical instrument. By setting different scaling length in 𝑋 

and 𝑌 coordinate, the height of the obstacle is normalized, thus high gap with the 

right attachment is avoided. Substituting these to the system gives us 

 𝑦̅𝑥𝑥̅̅̅̅ − 𝑦̅𝜏̅𝜏̅ = 0,      𝛾̅(𝜏̅) ≤ 𝑥̅ ≤ 1 (6) 

 𝑦̅(𝛾̅(𝜏̅), 𝜏̅) = 𝛾̅(𝑏 − 𝛾̅) (7) 

 𝑦̅(1, 𝜏̅) = ℎ (8) 

 𝑦̅𝑥̅(1, 𝜏̅) = 𝑏 − 2𝛾̅ (9) 

We define further initial conditions for this system as follows. 

 𝑦̅(𝑥̅, 0) = 𝑓(̅𝑥̅) (10) 

 𝑦̅𝜏̅(𝑥̅, 0) = 𝑔̅(𝑥̅) (11) 

We can derive further additional initial conditions for 𝛾, i.e, 𝛾(0) = 𝑃 and 

𝛾̇(0) = 𝑄, where 𝑃 is a solution of 𝑃(𝑏 − 𝑃) = 𝑓(̅𝑃) and 𝑄 =
𝑔̅(𝛼)

𝑏−2𝛼
.  

 

One of the difficulties in studying of moving boundary problem is the nonfixed 

domain with respect to time. This issue can be handled by applying boundary 

immobilization or boundary fixing technique using the following transformation 

  𝑥 =
𝑥̅−𝛾̅

1−𝛾̅
,   𝑦(𝑥, 𝜏) = 𝑦̅(𝑥̅, 𝜏̅), 𝜏 = 𝜏(𝜏̅),   𝛾(𝜏) = 𝛾̅(𝜏̅) (12) 

Here, we let the time scaling to be determined later. This transformation turns the 

system to  

 [1 − ((𝑥 − 1)𝛾̇𝜏𝜏̅)
2

] 𝑦𝑥𝑥 = (1 − 𝛾)2𝜏𝜏̅
2𝑦𝜏𝜏 + 2(𝑥 − 1)(1 − 𝛾)𝛾̇𝜏𝜏̅

2𝑦𝑥𝜏 

                    +(𝑥 − 1)[2𝛾̇2 + (1 − 𝛾)𝛾̈]𝜏𝜏̅
2𝑦𝑥 + (1 − 𝛾)2𝜏𝜏̅𝜏̅𝑦𝜏 (13) 

 𝑦(0, 𝜏) = 𝛾(𝑏 − 𝛾) (14) 

 𝑦(1, 𝜏) = ℎ (15) 

 𝑦𝑥(0, 𝜏) = (𝑏 − 2𝛾)(1 − 𝛾) (16) 

where the domain now is fixed in interval (0,1).  
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3 Analytical Solution 

At this section, we first assume that the string is perturbed initially with small 

displacement, i.e., 𝑦(𝑥, 0) = 𝜀𝑓(𝑥) and 𝑦𝜏(𝑥, 0) = 𝜀𝑔(𝑥). We define the 

perturbation expansion for 𝑦 and 𝛾 as follows. 

  𝑦(𝑥, 𝜏) = 𝑧(𝑥) + 𝜀𝑣(𝑥, 𝜏) + 𝒪(𝜀2) (17) 

  𝛾(𝜏) = 𝛾0 + 𝜀𝑠(𝜏) + 𝒪(𝜀2) (18) 

Substituting these to eq. (13)-(16) yields the following two systems of equations, 

  𝑧′′ = 0 (19) 

  𝑧(0) = 𝛾0(𝑏 − 𝛾0) (20) 

  𝑧(1) = ℎ (21) 

  𝑧′(0) = (𝑏 − 2𝛾0)(1 − 𝛾0) (22) 

for order 𝒪(1) and 

  (1 − 𝑥)(1 − 𝛾0)𝑠̈𝜏𝜏̅
2𝑧′ + 𝑣𝑥𝑥 

                             = (1 − 𝛾0)2𝜏𝜏̅
2𝑣𝜏𝜏 + (1 − 𝛾0)2𝜏𝜏̅𝜏̅𝑣𝜏 (23) 

  𝑣(0, 𝜏) = 𝑠(𝑏 − 2𝛾0) (24) 

  𝑣(1, 𝜏) = 0 (25) 

  𝑣𝑥(0, 𝜏) = −𝑠(𝑏 − 4𝛾0 + 2) (26) 

for order 𝒪(𝜀). Here the “prime” denotes the derivative with respect to time.  The 

corresponding intial condition for 𝑣 reads, 𝑣(𝑥, 0) = 𝑓(𝑥) and 𝑣𝜏(𝑥, 0) = 𝑔(𝑥). 

On can easily solve system (19)-(21), i.e. 

  𝑧 (𝑥) = ℎ𝑥 + 𝛾0(𝑏 − 𝛾0)(1 − 𝑥) (27) 

Extra condition (22) gives us the relation 𝛾0 = 1 − √1 + ℎ − 𝑏.   Taking the next 

order into consideration, observe first that by defining time transformation as 𝜏̅ =
𝜏(1 − 𝛾0), eq. (23) is reduced to 

  𝑣𝑥𝑥 = 𝑣𝜏𝜏 −
(1−𝑥)𝑠̈

1−𝛾0
𝑧′ (28) 

Next, by defining shifting transformation 

  𝑤(𝑥, 𝜏) = 𝑣(𝑥, 𝜏) − (𝑏 − 2𝛾0)(1 − 𝑥)𝑠(𝜏) (29) 

a homogeneous wave problem is obtained, 

  𝑤𝜏𝜏 = 𝑤𝑥𝑥 (30) 

  𝑤(0, 𝜏) = 𝑤(1, 𝜏) = 0 (32) 

which can be solved to 

  𝑤(𝑥, 𝜏) = ∑ 𝜙𝑛(𝜏)𝜓𝑛(𝑥)∞
𝑛=  (33) 
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where 𝜙𝑛(𝜏) = 𝐴𝑛 sin(𝜔𝑛𝜏) + 𝐵𝑛 cos(𝜔𝑛𝜏) and 𝜓𝑛(𝑥) = sin(𝜔𝑛𝑥) is 

corresponding eigenfunction of eigenvalue 𝜔𝑛 = 𝑛𝜋. Constants 𝐴𝑛 and 𝐵𝑛 are 

computed using initial conditions of 𝑣, as following 

  𝐴𝑛 = −
2

𝜔𝑛
2 [𝑔(0) − 𝜔𝑛⟨𝑔, 𝜓⟩] (34) 

  𝐵𝑛 = −
2

𝜔𝑛
[𝑓(0) − 𝜔𝑛⟨𝑓, 𝜓⟩] (35) 

where ⟨_, _⟩ is inner product operator in 𝐿2[0,1] space. Additional condition of eq. 

(26) can be used to obtain explicit solution of 𝑠 as follows 

  𝑠(𝜏) = ∑
𝜔𝑛𝜙𝑛(𝜏)

2(𝛾0−1)
∞
𝑛=1  (36) 

To conclude, the complete solution for 𝑦 is 

  𝑦(𝑥, 𝜏) = 𝑧(𝑥) + 𝜀 ∑ 𝜙𝑛(𝜏) [𝜓𝑛(𝑥) −
𝜔𝑛𝑧′(𝑥)(1−𝑥)

(1−𝛾0)2 ]∞
𝑛=1 + 𝒪(𝜀2) (37) 

This result is the same as is obtained in [8].  However, in this paper we present a 

rigorous mathematical derivation rather than assuming the solution as is done in 

[8].  Moreover, in [8], 𝜙𝑛 is set directly with some set of values, separating the 

solution context from initial conditions of the string.  

Given initial conditions 𝑓(𝑥) and 𝑔(𝑥) above equation can be computed over 

time 𝜏. However, defining the right 𝑓(𝑥) or 𝑓(̅𝑥̅) is required to have a good 

solution, otherwise there will be a discontinuity occurring in initial time steps. To 

be specific, 𝑓 should be tangent to the surface of the obstacle at 𝑥 = 0.  

4 Numerical Solution 

Let us now look at a numerical approach for solving the problem. We start with 

a system with the stationary solution has already been removed (28) with a 

particular boundary condition.  Let Δ𝑡 and Δ𝑥 are lengths of small interval slices 

for 𝑡 and 𝑥. We denote first 𝑣𝑖
𝑛 = 𝑣(𝑖Δ𝑥, 𝑛Δ𝑡) and 𝑠𝑛 = 𝑠(𝑛Δ𝑡). Using central 

difference scheme for differential approximation, we obtain 

  𝑣𝑖
𝑛+1 = 𝑉𝑖

𝑛 − 𝑣𝑖
𝑛−1 − 𝐶𝑖(𝑠𝑛+1 − 2𝑠𝑛 + 𝑠𝑛−1) (38) 

Where 𝑉𝑖
𝑛 = 2𝑣𝑖

𝑛 + (
Δ𝑡

Δ𝑥
)

2
(𝑣𝑖+1

𝑛 − 2𝑣𝑖
𝑛 + 𝑣𝑖−1

𝑛 ) and 𝐶𝑖 = (𝑖Δ𝑥 − 1)(𝑏 − 2𝛾0). 

This schema should be computed using boundary condition 𝑣0
𝑛 = 𝑠𝑛(𝑏 − 2𝛾0) 

and 𝑣𝑁𝑥
𝑛 = 0 where 𝑁𝑥  is the number of spatial grids. The tricky part of moving 

boundary problem is that we have two unknowns that must be solved 

simultaneously. In this case, value of 𝑠 is needed to compute (38) each time step. 

Recall that we have an additional boundary condition (26), i.e. 
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𝑣𝑖

𝑛+1−𝑣0
𝑛+1

Δ𝑥
= −𝑠𝑛+1(𝑏 + 2 − 4𝛾0) (39) 

Substituting this condition to schema (38) gives us  

  𝑠𝑛+1 =
1

2(𝛾0−1)Δ𝑥
[𝑉1

𝑛 − 𝑣1
𝑛−1 + 𝐶1(2𝑠𝑛 − 𝑠𝑛−1) (40) 

In addition to initial condition for 𝑣, i.e., 𝑣𝑖
0 = 𝑓(𝑖Δ𝑥), we also need initial 

condition for 𝑠 to compute the values initially. In that case, it is important to be 

noted that assumption of small initial string displacement implies also small 

initial conditions for 𝛾, thus we write 𝑃 − 𝛾0 = 𝜀𝑝 and 𝑄 = 𝜀𝑞. Thus, we have 

that 𝑠0 = 𝑝. However, both (38) and (40) need two time-steps backward to be 

computed. In that case, we use other initial conditions  

  
𝑣𝑖

1−𝑣𝑖
−1

2Δ𝑡
= (1 − 𝛾0)𝑔(𝑖Δ𝑥)   and   

𝑠1−𝑠−1

2Δ𝑡
= 𝑞 (41) 

which gives us explicit form of 𝑣 and 𝑠 at time step 1, i.e. 

  𝑣𝑖
1 =

1

2
𝑉𝑖

0 + Δ𝑡(1 − 𝛾0)𝑔(𝑖Δ𝑥) − 𝐶𝑖(𝑠1 − 𝑝 − 𝑞Δ𝑡) (42) 

 𝑠1 =
1

2(𝛾0−1)Δ𝑥
[

1

2
𝑉𝑖

0 + Δ𝑡(1 − 𝛾0)𝑔(Δ𝑥) + 𝐶1(𝑝 + 𝑞Δ𝑡)] (43) 

This completes the schema.  

5 Result and Discussion 

In this section, we will discuss some computational results and simulation of the 

problem. We use initial condition as 𝑓(𝑥) = sin(𝜋𝑥) and 𝑔(𝑥) = 0, which 

represents smooth idle displacement. To be noted that this initial condition does 

not meet tangential requirements with the obstacle. We will see that even though 

a discontinuity occurs initially, it does not affect the dynamics afterwards. 

We set first 𝜀 = 0.01. Value of 𝜀 needs to be this small due the scale of variables 

and parameters involved in the problem. Observe that in our scaled model, value 

of 𝑏 should be less than 1. Even in more realistic setup, 𝑏 should be far less than 

1, like 0.1. The height of the obstacle thus become very small as it equals 
𝑏2

4
. This 

then restrict ℎ to be around that value. Even though mathematically value of ℎ is 

arbitrary. It won’t be realistic if gap between ℎ and the height of the obstacle is 

too large. In this setting, the vibration will be very small, otherwise the lower 

amplitude will be too negative, which should be avoided for now, due to 

practicality and possible violation of tangentiality of the string with the obstacle. 

To illustrate this point, let 𝑏 = 0.1 and ℎ = 0.01. This setup is shown in Fig. 1. 



 A Note on Stefan Wave Problem 203 

 

Copyright © 2022 Published by ITB 

 

 

Figure 1 Initial setup of the problem in the original domain  𝑥̅. 

 

Figure 2 Moving boundary profile 𝑠(𝑡) for initial condition 𝑓(𝑥) = sin(𝜋𝑥). 

We can see even with 𝜀 = 0.01, the initial displacement is very large. Mandal 

and Wahi did mention about that using different length scale for 𝑋 and 𝑌 is to 

avoid rounding error due to small number computation. However, the value is 

still large enough to obtain accurate solution numerically. If we simulate the 

moving boundary 𝑠 with this setup using both analytical solution (36) and the 

numerical schema, we obtain a profile shown in Fig. 2. 

The solutions agree with negligible difference. A jump at the initial time steps in 

the numerical result is caused by the initial conditions 𝑓 that is not tangent with 

the obstacle. If we look closely at the model setup, as shown in Fig. 3, the initial 
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condition 𝑓 touches the obstacle improperly at 𝑠(0) = 𝛾0. Given the slope of the 

tangent line of 𝑓 at 𝑠 = 𝛾0, the point where the tangent line of the obstacle has 

the same slope is around 0.03. In the first time step of numerical integration, this 

improper condition is corrected. This jump does not happen in analytical solution 

because it does not require the exact value of 𝑠(0).  

 

Figure 3 Closer look of the initial setup of the problem. The initial condition 𝑓 

is traversing the obstacle. 

 

 

Figure 4 Map of the solution 𝑣 in spatial and temporal domain using numerical 

approach. 
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The profile of moving boundary forms sinusoidal wave as the attachment point 

is moving back and forth around stationary point γ_0. If we map the solution of 

v, as shown in Fig. 4, we can see a perfect wave is formed. If we look at the 

explicit form, eq. (29), there should be a disturbance term caused by the 

nonlinearity of the moving boundary. However, the term is very small that it 

barely affects the wave profile. 

 

Figure 5 Moving boundary profile 𝑠(𝑡) for initial condition 𝑓(𝑥) = − sin(𝜋𝑥). 

 

Figure 6 Problem setup (left) and the moving boundary profile (right) with 𝜀 =
0.001, 𝑏 = 0.1, and ℎ = 0.002. 
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In previous case, as shown in Fig. 2, the moving boundary profile immediately 

starts from the left of stationary point 𝛾0. Positive derivative of the initial 

condition at the left boundary causes the attachment point shifts to the left as the 

string is lifted up a bit. On the other hand, if we set the initial condition to have 

negative derivative at the left boundary, e.g.., 𝑓(𝑥) = − sin(𝜋𝑥), the attachment 

point shifts to the right, as shown in Fig. 5. For another case, if we take smaller 

value of 𝜀 for the sake of realistic model, no computational issue occurs as it is 

still be computable without experiencing underflow. In Fig. 6. 

6 Conclusion 

Stefan problem for wave equation has been studied. Straightforward perturbation 

solution is implemented using some set of nondimensionalization scaling. This 

work presents some remarks and notes to the solution, especially in matter of 

scales of the variables as it affects the interpretability of the problem with the real 

phenomenon. A numerical schema is applied to the problem and gives close 

results with the analytical solution.  More generic Stefan problem for wave 

equation is suggested for future research. 
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