

Proceedings of the 4th ITB Graduate School Conference

Innovation and Discovery for Sustainability July 6, 2023

B- $Hom(\mathbb{Z}_n,\mathbb{Z}_n)$ as B-Algebras

Pramitha Shafika Wicaksono, Novi Sagita Triyanti, Lialy Sarti & Elvira Kusniyanti*

Department of Mathematics, FMIPA, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia *Email: elvirakusniyanti@itb.ac.id

Abstract. B-algebra is an algebraic structure that can be built from a group. Because the set of all integers completed by the addition operation satisfies the group property then B-algebra can be built from a group of the set of all integers completed by the addition operation. The set of all B-homomorphisms from B-algebra which is built from a group of the set of all integers modulo n can form B-algebra if it's certain properties.

Keywords: *B-algebra*, *group*, *B-homomorphism*, the set of all integers modulo n.

1 Introduction

An algebraic structure is a non-empty set that is equipped by one or more binary operations that satisfy certain properties for example rings, groups, etc [1]. Another example of an algebraic structure is B-algebra which is a class of K-algebras built from groups[2]. In 2002 J. Negger and Hee Sik Kim introduced B-algebra which is a non-empty set of *X* equipped by a binary operation and satisfies certain properties[3].

B-algebra is an algebraic structure that can be built from a group with 0 identity elements[1]. The set of all integers completed by the addition operation satisfies the group property. In 2021 Pramitha Shafika Wicaksono, Y. Sumanto, and Bambang Irawanto introduced B-algebra which is built from a group of the set of all integers which is a property of B-algebra if it's built from the set of all integers completed by the addition operation that is satisfied group property[1].

In the group, there is a concept of homomorphism group. Homomorphism is a mapping between two algebraic structures. Because B-algebra is an algebraic structure that can be built by groups then B-algebra also has the same concept as groups, that is B-homomorphism[1]. The set of all B-homomorphism from B-algebra A to B-algebra B is called B-Hom(A, B)[4]. In 2010 N.O Al-Shehri introduced on [1]Hom(-, -) as B-algebra[5]. In this paper, we investigate some properties of B- $Hom(\mathbb{Z}_n, \mathbb{Z}_n)$ that is the set of all B-homomorphism from B-

algebra which is built from a group of the set of all integers to B-algebra which is built from a group of the set of all integers.

2 B-Algebras

Definition 1 [6] Suppose the binary operation "*" on a non-empty set *A* and constant 0 satisfies the following property, then *B-algebra*:

- 1. x * x = 0
- 2. x * 0 = x
- 3. (x * y) * z = x * (z * (0 * y))

for every $x, y, z \in A$

Definition 2 [3]Let (A; *, 0) is B-algebra, if the following conditions can be met then B-algebra is called 0-commutative

$$x * (0 * y) = y * (0 * x)$$

for every $x, y \in A$

Proposition 3 [6], [7]Let $(A; \circ, 0)$ with the identity element is 0. If $x * y = x \circ y^{-1}$ for every $x, y \in A$, then (A; *, 0) is *B-algebra*.

Proof. Let $x, y, z \in A$ then

a)
$$x * x = x \circ x^{-1} = 0$$

b)
$$x * 0 = x \circ 0^{-1} = x \circ 0 = x$$

c)
$$(x * y) * z = (x \circ y^{-1}) \circ z^{-1}$$

 $= x \circ (y^{-1} \circ z^{-1})$
 $= x \circ (z \circ y)^{-1}$
 $= x * (z \circ y)$
 $= x * (z * y^{-1})$
 $= x * (z * y)$

So that based on definition 1 it is proven that A is *B-algebra*

Theorem 4 [4] Let $(A; \circ, 0)$ is group commutative

$$x*y=x\circ y^{-1}$$

for every $x, y \in A$, then (A; *, 0) is *B-algebra* and *0-commutative*

Proof. Let $x, y \in A$, then

$$x \circ y = x \circ (y^{-1})^{-1}$$

= $x \circ (0 \circ y^{-1})^{-1}$
= $x * (0 * y)$

And

$$y \circ x = y \circ (x^{-1})^{-1}$$

= $y \circ (0 \circ x^{-1})^{-1}$
= $y * (0 * x)$

So, if $x \circ y = y \circ x$ then x * (0 * y) = y * (0 * x), and then based on definition 2 (A;*,0) is B-algebra 0-commutative.

Definition 5 [3] Let (A; *, 0) is *B-algebra*, the non-empty subset N of A can be called subalgebraic *B-algebra* (A; *, 0) if

$$x * y \in N$$

for every $x, y \in N$

Definition 6 [3] The non-empty subset N of A is called a sub-normal algebra at B-algebra (A; *, 0) if

$$(x*a)*(y*b) \in N$$

for every x * y, $a * b \in N$

Proposition 7 [8]Let (A; *, 0) is *B-algebra*, then

1.
$$(x*z)*(y*z) = x*y$$

2.
$$0 * (x * y) = y * x$$

for every $x, y, z \in A$

3 B-Homomorphism

Definition 8 [4] Let B-algebra (A; *, 0) and $(B; \circ, 0')$. Function φ *from A to B*, can be stated as $\varphi: A \to B$, then for every $x, y \in A$ called B-homomorphism if

$$\varphi(x * y) = \varphi(x) \circ \varphi(y)$$

for every $\varphi(x)$, $\varphi(y) \in B$

Definition 9 [4] Let B-algebra (A; *, 0) and $(B; \circ, 0')$. Function $\theta: A \to B$ called B-homomorphism trivial if $\theta(x) = 0'$, for every $x \in A$

Definition 10 [4] Let (A; *, 0) and $(B; \circ, 0')$ is B-algebra then the set of all B-homomorphism form B-algebra (A; *, 0) to B-algebra $(B; \circ, 0')$ can be written as

B-homomorphism (A, B)

Definition 11 [4] Let (A; *, 0) and $(B; \circ, 0')$ is B-algebra and $\varphi \in B - \text{hom}(A, B)$ then apply:

$$\varphi(0) = 0'$$
$$\varphi(0 * x) = 0' \circ \varphi(x)$$

for every $x \in A$

4 B-Algebra $(\mathbb{Z}_n; *, [0]_n)$ Defined from The Group $(\mathbb{Z}_n, +_n)$

Theorem 12. [1] Let $(\mathbb{Z}_n, +_n)$ be group, defined binary operation " * " in \mathbb{Z}_n with $[x_n] * [y_n] = [x]_n -_n [y_n]$, for every $[x_n], [y_n] \in \mathbb{Z}_n$, then $(\mathbb{Z}_n; *, [0]_n)$ is Balgebra.

Theorem 13. [1] Let $(\mathbb{Z}_n, +_n)$ be group and $(\mathbb{Z}_n; *, [0]_n)$ be B-algebra which is defined with $[x]_n * [y]_n = [x]_n -_n [y]_n$, for every $[x_n], [y_n] \in \mathbb{Z}_n$, then $(\mathbb{Z}_n; *, [0]_n)$ is 0-commutative B-algebra.

Theorem 14. [1] Let $(\mathbb{Z}_n, +_n)$ be group and function $f: \mathbb{Z}_n \to \mathbb{Z}_n$, function f is a group homomorphism if and only if it exists $[k]_n \in \mathbb{Z}_n$ so that $f([m]_n) = [k]_m[m]_n$ for every $[m]_n \in \mathbb{Z}_n$.

Theorem 15. [1] Let $(\mathbb{Z}_n, +_n)$ be group and group homomorphism $f: \mathbb{Z}_n \to \mathbb{Z}_n$, if $(\mathbb{Z}_n; *, [0]_n)$ is B-algebra which is defined with $[x]_n * [y]_n = [x]_n -_n [y]_n$, for every $[x_n], [y_n] \in \mathbb{Z}_n$, then $f: \mathbb{Z}_n \to \mathbb{Z}_n$ is also B-homomorphism.

Theorem 16 [1] Let $(\mathbb{Z}_n; *, [0]_n)$ be B-algebra and B-Hom $(\mathbb{Z}_n, \mathbb{Z}_n)$ is the set of all B-homomorphism from B-algebra $(\mathbb{Z}_n; *, [0]_n)$ to B-algebra $(\mathbb{Z}_n; *, [0]_n)$. If in B-Hom $(\mathbb{Z}_n, \mathbb{Z}_n)$ defined binary operation " \circledast " with

$$(f \circledast g)([x]_n) = f([x]_n) * g([x]_n)$$

For every $[x]_n \in \mathbb{Z}_n$ with $\theta([x]_n) = [0]_n$ for every $[x]_n \in \mathbb{Z}_n$, then B-Hom $(\mathbb{Z}_n, \mathbb{Z}_n)$; (*), (*) is B-algebra.

5 B-Hom(\mathbb{Z}_n , \mathbb{Z}_n) as B-algebra

Definition 17. Given $(\mathbb{Z}_n; *, [0]_n)$ is a B-algebra and B-Hom $(\mathbb{Z}_n, \mathbb{Z}_n)$ is the set of all B-homomorfisma from B-algebra $(\mathbb{Z}_n; *, [0]_n)$ to B-algebra $(\mathbb{Z}_n; *, [0]_n)$. In B-Hom $(\mathbb{Z}_n, \mathbb{Z}_n)$ defined operation " \circledast " with

$$(f \circledast g)([a]_n) = f([a]_n) * g([a]_n)$$

for every $f, g \in B\text{-Hom}(\mathbb{Z}_n, \mathbb{Z}_n)$ and $\theta([a]_n) = [0]_n$ for every $[a]_n \in \mathbb{Z}_n$

Theorem 18. Given $(\mathbb{Z}_n; *, [0]_n)$ is a B-algebra, then $(B\text{-Hom}(\mathbb{Z}_n, \mathbb{Z}_n), \theta)$ is B-algebra 0-commutative

Proof:

Based on Theorem 19, since $(\mathbb{Z}_n; *, [0]_n)$ is B-algebra then $(B\text{-Hom}(\mathbb{Z}_n, \mathbb{Z}_n); \circledast, \theta)$.

We will prove that $(B-Hom(\mathbb{Z}_n,\mathbb{Z}_n);\circledast,\theta)$ is B-algebra 0-commutative.

Based on Theorem 16, $(\mathbb{Z}_n; *, [0]_n)$ is B-algebra 0-commutative

Let $f, g \in \text{Hom}(\mathbb{Z}_n, \mathbb{Z}_n)$ and $[a]_n \in \mathbb{Z}_n$ then

$$(f \circledast (\theta \circledast g))([a]_n) = f([a]_n * (\theta([a]_n) * g([a]_n))$$

$$= f([a]_n) * ([0]_n * g([a]_n))$$

$$= g([a]_n * ([0]_n * f([a]_n))$$

$$= g([a]_n * (\theta([a]_n) * f([a]_n))$$

$$= (g \circledast (\theta \circledast f))([a]_n)$$

so that $f \circledast (\theta \circledast g) = g \circledast (\theta \circledast f)$. Based on definition 3, (B-Hom($\mathbb{Z}_n, \mathbb{Z}_n$); \circledast , θ) is B-algebra 0-comutative

Example 19. Given $(\mathbb{Z}_3, +_3)$, a group under operation " $+_3$ " which is additional operation of modulo 3 shown in the following table.

+3	[0] ₃	[1] ₃	[2] ₃
[0] ₃	[0] ₃	[1] ₃	[2] ₃
[1] ₃	[1] ₃	[2] ₃	[0] ₃
[2] ₃	[2] ₃	[0] ₃	[1] ₃

Table 1 Definition Table of Operation " $+_3$ " in \mathbb{Z}_3

Given a biner operation " * " defined as

$$[x]_3 + [y]_3 = [x]_3 - 3[y]_3$$

For every $[x]_3$, $[y]_3 \in \mathbb{Z}_3$ that is shown in the following table.

+3	[0] ₃	[1] ₃	[2] ₃
[0] ₃	[0] ₃	[2] ₃	[1] ₃
[1] ₃	[1] ₃	[0] ₃	[2] ₃
[2] ₃	[2] ₃	[1] ₃	[0] ₃

Table 2 Definition Table of Operation " * " in \mathbb{Z}_3

0-comutative. The functions θ , I, μ : $\mathbb{Z}_3 \to \mathbb{Z}_3$ respectively are $\theta([x]_3) = [0]_3$, $I([x]_3) = [x]_3$ and $\mu([x]_3 = [2]_3[x]_3$ for every $[x]_3 \in \mathbb{Z}_3$ then B-Hom($\mathbb{Z}_3, \mathbb{Z}_3$) is B-algebra 0-comutative.

The function $\theta: \mathbb{Z}_3 \to \mathbb{Z}_3$ with $\theta([x]_3) = [0]_3$, for every $[x]_3 \in \mathbb{Z}_3$ shown in the Picture 1.

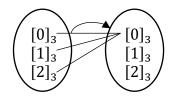


Figure 1 The Function $\theta: \mathbb{Z}_3 \to \mathbb{Z}_3$

The function $I: \mathbb{Z}_3 \to \mathbb{Z}_3$ with $I([x]_3 = [x]_3$ for every $[x]_3 \in \mathbb{Z}_3$ shown in the Picture 2.

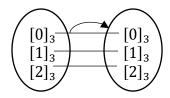


Figure 2 The function $\theta: \mathbb{Z}_3 \to \mathbb{Z}_3$

The function $\mu: \mathbb{Z}_3 \to \mathbb{Z}_3$ with $\mu([x]_3 = [2]_3[x]_3$, for every $[x]_3 \in \mathbb{Z}_3$ shown in the Picture 3.

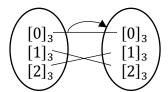


Figure 3 The function $\mu: \mathbb{Z}_3 \to \mathbb{Z}_3$

Based on Theorem 18, since $(\mathbb{Z}_3; *, [0]_3)$ is B-algebra 0-comutative then (B-Hom $(\mathbb{Z}_2, \mathbb{Z}_2); (*), \theta$) is B-algebra 0-commutative.

The operation " \circledast " in B-Hom(\mathbb{Z}_3 , \mathbb{Z}_3) shown in the following table.

*	θ	I	μ
θ	θ	μ	I
I	I	θ	μ
μ	μ	I	θ

Table 3 Definition Table of Operation " \circledast " in B-Hom(\mathbb{Z}_3 , \mathbb{Z}_3)

Definition 20 [1] Let M and \circledast be subsets of X and Hom(X,Y), respectively. We define orthogonal subsets M^{\perp} and \circledast^{\perp} of M and \circledast , respectively, by

$$M^{\perp} = \{ f \in Hom(X, Y) | f(x) = 0, \text{ for all } x \in M \}$$
 and

$$\circledast^{\perp} = \{x \in X | f(x) = 0, \text{ for all } f \in Hom(X, Y)\}$$

Theorem 21. Given B-algebra $(\mathbb{Z}_n;*,[0]_n)$. Let $M\subseteq\mathbb{Z}_n$ and $\theta\subseteq B$ -Hom $(\mathbb{Z}_n,\mathbb{Z}_n)$, then M^\perp and θ^\perp respectively are normal subalgebra of (B-Hom $(\mathbb{Z}_n,\mathbb{Z}_n); (*), \theta)$ and $(\mathbb{Z}_n;*,[0]_n)$.

Proof:

Since for every $[x]_n * [y]_n$, $[a]_n * [b]_n \in M$ applies

$$([x]_n * [a]_n) * ([y]_n * [b]_n) \in M$$

Based on Definition 6, M is normal subalgebra in B-algebra (\mathbb{Z}_3 ;*, $[0]_n$).

We will show that M^{\perp} is normal subalgebra of (B-Hom(\mathbb{Z}_n , \mathbb{Z}_n); \circledast , θ)

Let $f \circledast g, h \circledast j \in M^{\perp}$ and since $M^{\perp} = \{f \in B\text{-Hom}(\mathbb{Z}_n, \mathbb{Z}_n) | f([a]_n = [0]_n, for every <math>[a]_n \in M\}$, then

$$(f \circledast g)([a]_n) = [0]_n$$
, for every $[a]_n \in M$

$$(h \circledast j)([a]_n) = [0]_n$$
, for every $[a]_n \in M$

Based on Theorem 18, (B-Hom($\mathbb{Z}_n, \mathbb{Z}_n$); \circledast , θ) is B-algebra 0-commutative then

$$((f \circledast h) \circledast (g \circledast j))([a]_n) = \Big(f \circledast \Big((g \circledast j \circledast (\theta * h))\Big))([a]_n)$$

$$= \Big(f \circledast \Big(g \circledast ((\theta \circledast h) \circledast (\theta \circledast j))\Big))([a]_n)$$

$$= \Big(f \circledast \Big(g \circledast (j \circledast (\theta \circledast (\theta \circledast h)))\Big))([a]_n)$$

$$= \Big(f \circledast \Big(g \circledast (j \circledast (h))\Big)([a]_n)$$

$$= \Big(f \circledast \Big(g \circledast (j \circledast (\theta \circledast (\theta \circledast h)))\Big)\Big)([a]_n)$$

$$= \Big(f \circledast \Big(\theta \circledast (g \circledast h)) \circledast j\big)([a]_n)$$

$$= \Big((j \circledast h) \circledast (\theta \circledast f)) \circledast g\big)([a]_n)$$

$$= \Big((j \circledast h) \circledast (g \circledast (\theta \circledast (\theta \circledast f)))\Big)([a]_n)$$

$$= \Big((j \circledast h) \circledast (g \circledast f)\big)([a]_n)$$

$$= \Big((j \circledast h) \circledast (g \circledast f)\big)([a]_n)$$

$$= \left(\theta([a]_n) * \left(h([a]_n) * j([a]_n)\right)\right)$$

$$* \left(\theta([a]_n) * \left(f([a]_n) * j([a]_n)\right)\right)$$

$$= ([0]_n * [0]_n) * ([0]_n * [0]_n)$$

$$= [0]_n * [0]_n$$

$$= [0]_n$$

Since $(f \circledast h) \circledast (g \circledast j)([a]_n) = [0]_n$ so that $(f \circledast h) \circledast (g \circledast j) \in M^{\perp}$ then based on Definition 6, M^{\perp} is normal subalgebra of $(B\text{-Hom}(\mathbb{Z}_n, \mathbb{Z}_n); \circledast, \theta)$.

Next, we will show that θ^{\perp} is normal subalgebra of $(\mathbb{Z}_n; *, [0]_n)$.

Let
$$[x]_n*[y]_n$$
, $[a]_n*[b]_n\in\theta^\perp$ then
$$f([x]_n*[y]_n)=[0]_n$$

$$g([a]_n*[b]_n)=[0]_n$$

so that

$$f(([x]_n * [a]_n) * ([y]_n * [b]_n)) = f([x]_n * (([y]_n * [b]_n) * ([0]_n * [a]_n)))$$

$$= f([x]_n$$

$$* ([y]_n * (([0]_n * [a]_n) * ([0]_n * [b]_n))))$$

$$= f([x]_n * (([y]_n * ([b]_n * [a]_n))) * [y]_n)$$

$$= f(([x]_n * ([0]_n * ([b]_n * [a]_n)) * [y]_n)$$

$$= f(([b]_n * [a]_n) * ([0]_n * [x]_n))$$

$$= f(([b]_n * [a]_n) * ([y]_n * [x]_n))$$

$$= f(([b]_n * [a]_n * ([y]_n * [x]_n)))$$

$$= f(([0]_n * ([a]_n * [b]_n))$$

$$* ([0]_n * ([x]_n * [y]_n))$$

$$= (f(0]_n * f([a]_n * [b]_n)) * (f([0])n)$$

$$* f([x]_n * [y]_n))$$

$$= ([0]_n * [0]_n) * ([0]_n * [0]_n)$$

$$= [0]_n * [0]_n$$

Since $f(([x]_n * [a]_n) * ([y]_n * [b]_n)) = [0]_n$ so that $f(([x]_n * [a]_n) * ([y]_n * [b]_n)) \in \theta^{\perp}$ then based on Definition 6, θ^{\perp} is normal subalgebra of $(\mathbb{Z}_n; *, [0]_n)$.

Theorem 22 Let B-algebra $(\mathbb{Z}_n;*,[0]_0)$. For example $M\subseteq\mathbb{Z}_n$ and $\theta\subseteq B-Hom(\mathbb{Z}_n,\mathbb{Z}_n)$, then M^\perp and θ^\perp successively is a subalgebra of $(B-Hom(\mathbb{Z}_n,\mathbb{Z}_n;*,\theta))$ and $(\mathbb{Z}_n;*,[0]_n)$

Proof. Because for every $[x]_n$, $[y]_n \in M$ apply

$$[x]_n * [y]_n \in M$$

Then by definition, M subalgebra on (B-algebra $(\mathbb{Z}_n, \mathbb{Z}_n)$; \circledast , θ).

Let
$$f, g \in M^{\perp}$$
, because $M^{\perp} = \xi f \in B - Hom(\mathbb{Z}_n, \mathbb{Z}_n) | f \circledast = [0]_n, \forall x \in M$)

Then:

$$f([a]_n) = [0]_n, \forall [a]_n \in M$$

 $g([a]_n) = [0]_n, \forall [a]_n \in M$

So that

$$(f \circledast g)([a]_n) = f([a]_n) * g([a]_n)$$
 Definition 17
$$= [0]_n * [0]_n$$

$$= [0]_n$$
 Definition 1 No 1

Because $(f\circledast g)([a]_n)=[0]_n$ then $f\circledast g\in M^\perp$ then by definition 5 M^\perp subalgebra from $(B-Hom\ (\mathbb{Z}_n,\mathbb{Z}_n);\circledast,\theta)$

Showed θ^{\perp} is subalgebra B-algebra (\mathbb{Z}_n ; *, $[0]_n$

Let $[x]_n, [y]_n \in \theta^{\perp}$ then

$$\begin{split} f([x]_n) &= [0]_n, & \forall [x]_n \in \theta \\ f([y]_n) &= [0]_n, & \forall [y]_n \in \theta \end{split}$$

So that

$$f([x]_n * [y]_n) = f([x]_n) * f([y]_n)$$

= $[0]_n * [0]_n$
= $[0]_n$ Definition 1 No 1

Because $f([x]_n * [y]_n) = [0]_n$ then $f([x]_n * [y]_n \in \theta^{\perp}$ then by definition 5 θ^{\perp} subalgebra from B-algebra $(\mathbb{Z}_n; *, [0]_n)$

Preposition 23 Given group $(\mathbb{Z}_n, +_n)$ and $(\mathbb{Z}_n; *, [0]_n)$ is *B-algebra* defined with

$$[x]_n * [y]_n = [x]_n - n[y]_n$$

For every $[x]_n$, $[y]_n \in \mathbb{Z}_n$, if $n \le 2, n \in \mathbb{N}$ then $(\mathbb{Z}_n; *, [0]_n)$ is *B-algebra* associative.

6 Conclusion

B-algebra is an algebraic structure that can be built from a group. B-algebra built from the \mathbb{Z}_n group equipped with binary operations, namely addition and its properties. The set of all B-homomorphisms of B-algebra which is constructed from the set of all integers modulo n can form a B-algebra if it has certain properties. B-algebra is an algebraic structure that can be built from a group with 0 identity elements, within a group, there is the concept of group homomorphism. Because B-algebra is an algebraic structure that can be built by groups, B-algebra also has the same concept as groups, namely B-homomorphism. Based on the definitions and theorems that have been proven, it can be stated that some of the properties of B-Hom(\mathbb{Z}_n , \mathbb{Z}_n) which are the set of all B-homomorphisms of B-algebra which are constructed from groups of the set of all integers become B-algebras which are constructed from groups from the set of all integers that satisfy certain properties.

Refrences

- [1] P. S. Wicaksono, Y. D. Sumanto, and B. Irawanto, "B-Algebras Which Generated by Z n Group," International Journal of Mathematics and Its Applications, vol. 9, no. 3, pp. 151–160, 2021.
- [2] K. H. Dar and M. Akram, "On K-homomorphisms of K-algebras," International Mathematical Forum, vol. 2, no. 46, pp. 2283–2293, 2007, doi: 10.12988/imf.2007.07203.
- [3] J. Neggers and H. S. Kim, "On B-algebras," Matematiqki Vesnik, vol. 54, pp. 21–29, 2002.
- [4] P. Shafika Wicaksono, Y. D. Sumanto, and B. Irawanto, "B-Hom (-, -) Dari Suatu B-Aljabar Sebagai B-Aljabar," vol. 4, no. 1, 2021, [Online]. Available: www.jurnalmat.math.fsm.undip.ac.id
- [5] N. O. Al-Shehri, "ON Hom (,) AS B -ALGEBRAS," JP Journal of Algebra, vol. 18, no. 1, pp. 17–24, 2010.

- [6] P. J. Allen, J. Neggers, and H. S. Kim, "B-algebras and groups," Scientiae Mathematicae Japonicae Online, vol. 9, pp. 159–165, 2003.
- [7] J. R. Cho and H. S. Kim, "On B -algebras and quasigroups," Quasigroups and Related Systems, vol. 8, pp. 1–6, 2001.
- [8] A. Walendziak, "A note on normal subalgebras in B-algebras," Scientiae Mathematicae Japonicae Online, pp. 49–53, 2005.